

Lecture Notes in Artificial Intelligence 3847
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Klaus P. Jantke Aran Lunzer
Nicolas Spyratos Yuzuru Tanaka (Eds.)

Federation
over the Web

International Workshop
Dagstuhl Castle, Germany, May 1-6, 2005
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Klaus P. Jantke
FIT Leipzig, Forschungsinstitut für InformationsTechnologien
Postfach 30 11 66, 04251 Leipzig, Germany
E-mail: jantke@meme.hokudai.ac.jp

Aran Lunzer
Yuzuru Tanaka
Hokkaido University, Meme Media Laboratory
North 13 West 8, Sapporo 060-8628, Japan
E-mail: {aran,tanaka}@meme.hokudai.ac.jp

Nicolas Spyratos
Université Paris-Sud, Laboratoire de Recherche en Informatique
LRI-Bât. 490, 91405 Orsay Cedex, France
E-mail: spyratos@lri.fr

Library of Congress Control Number: 2005938389

CR Subject Classification (1998): I.2, H.2.8, H.3, H.4, J.1

ISSN 0302-9743
ISBN-10 3-540-31018-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31018-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11605126 06/3142 5 4 3 2 1 0

Preface

The lives of people all around the world, especially in industrialized nations,
continue to be changed by the presence and growth of the Internet. Its influence
is felt at scales ranging from private lifestyles to national economies, boosting
the pace at which modern information and communication technologies influence
personal choices along with business processes and scientific endeavors.

In addition to its billions of HTML pages, the Web can now be seen as
an open repository of computing resources. These resources provide access to
computational services as well as data repositories, through a rapidly growing
variety of Web applications and Web services.

However, people’s usage of all these resources barely scratches the surface of
the possibilities that such richness should offer. One simple reason is that, given
the variety of information available and the rate at which it is being extended,
it is difficult to keep up with the range of resources relevant to one’s interests.
Another reason is that resources are offered in a bewildering variety of formats
and styles, so that many resources effectively stand in isolation.

This is reminiscent of the challenge of enterprise application integration, fa-
miliar to every large organization be it in commerce, academia or government.
The challenge arises because of the accumulation of information and communica-
tion systems over decades, typically without the technical provision or political
will to make them work together. Thus the exchange of data among those sys-
tems is difficult and expensive, and the potential synergetic effects of combining
them are never realized.

Motivation for overcoming this challenge with respect to the Web is found
in many domains. In academia there is a recognized need for interdisciplinary
and international availability, distribution and exchange of intellectual resources,
which include both static information (such as publications and other research
results) and the tools that support research activities. Similar pressure derives
from the development and deployment of pervasive computing, which extends
the types of resources that are present on the Web to encompass embedded de-
vices and mobile computing resources, communicating over wireless networks. In
such domains, just as for enterprise application integration, the rich variety of re-
sources and the boundless human creativity applied in developing new solutions
conspire to increase the number of compatibility barriers.

To what extent can this challenge be addressed by standardization? While
the development and broad adoption of standards are crucial to the advance
of information and communication technologies, any attempt to find a general
solution to resource incompatibility through global standardization is doomed
to fail because of the diversity of resources and the pace at which they change.
That said, given an appropriately narrowed target scope, it is reasonable for
providers to agree on a shared middle ground that will increase the mutual

VI Preface

compatibility of their resources. This is the key to the approach known as medi-
ation. Mediation, at least as usually understood in the area of databases, requires
cooperation among providers in specifying (a) a well-defined community of co-
operating sources, and (b) a common schema (called the mediator schema) to
which the sources address their queries and/or provide answers.

In contrast to mediation, the study of federation involves working to bridge
the differences between resources without such a predefined common ground.
The process of resource federation in general involves selecting the resources
that are to be combined, discovering the relationships that will allow them to
work together, establishing the necessary connections, then driving the assembly
in a coordinated way to achieve certain desired goals. The science of federation
requires new theoretical foundations and enabling technologies for analysis of
syntactic and/or semantic interrelations among resources, matching of service
requesters and providers, and reliable and secure establishment and coordination
of their execution.

Federation over the Web has attracted the attention of researchers aiming
to support interdisciplinary and cross-border reuse and interoperation of het-
erogeneous intellectual resources, for example in support of scientific research,
simulation, and digital libraries. Federation over enterprise intranets, also based
on Web technologies, is being pursued as a way to bring large numbers of legacy
application systems into cooperation with each other.

Existing work on federation can be divided broadly into programmatic and
interactive approaches. Programmatic approaches are based on standardization
at the level of communication protocols and languages for discovering compat-
ibilities between resources, including the run-time matching of requesters and
providers; for the Web, such federation tends to be based on Web-service tech-
nologies. On the other hand, interactive federation places in the hands of the user
all responsibility for judging which resources are suitable for connection, then
establishing and coordinating such connections. A simple example of interactive
federation on the Web is the use of visual operations to connect result elements
of one Web application, found at predictable locations within its HTML results,
to input fields within an HTML form of another application.

From 1 to 6 May 2005 we held a workshop at Dagstuhl Castle to discuss
advances in this area, drawing together active researchers from several institutes
in Japan and Europe. The workshop focused on theoretical foundations and
enabling technologies for federation of resources offered over the Web or within
pervasive computing environments. We invited the participants to present and
discuss work falling under any of the following topics:

– Knowledge look-up and matching
– Knowledge search and clustering
– Knowledge ontology and mediation
– Interoperation of Web-based resources
– Knowledge extraction and Web wrappers
– Computational models for knowledge federation

Preface VII

Based on the 18 workshop presentations, we went through a process of consul-
tation, reviewing and editing to arrive at the 12 papers in this book. As shown
in the table of contents, these papers touch on most of the above topics.

Future research and development of Web-based federation stands to influence
how humans use intellectual resources in local and global networks. In combi-
nation with the rise of ubiquitous computing, introducing new forms of mobile
computing devices and smart objects, computer systems will increasingly form
location-based, on-demand federations. By the meeting and cooperation of these
systems, humans will be dynamically connected with other humans and with a
greater variety of systems and services. One can envisage future workshops on
resource federation including contributions from the humanities, including soci-
ology and psychology.

Let the present volume set the stage for such exciting developments.

October 2005 Klaus P. Jantke
Aran Lunzer

Nicolas Spyratos
Yuzuru Tanaka

Table of Contents

Knowledge Look-Up and Matching

Text Mining Using Markov Chains of Variable Length
Björn Hoffmeister, Thomas Zeugmann . 1

Faster Pattern Matching Algorithm for Arc-Annotated Sequences
Takuya Kida . 25

VSOP (Valued-Sum-of-Products) Calculator for Knowledge Processing
Based on Zero-Suppressed BDDs

Shin-ichi Minato . 40

Knowledge Search and Clustering

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique
Search

Makoto Haraguchi, Yoshiaki Okubo . 59

Specific-Purpose Web Searches on the Basis of Structure and
Contents

Mineichi Kudo, Atsuyoshi Nakamura . 79

Graph Clustering Based on Structural Similarity of Fragments
Tetsuya Yoshida, Ryosuke Shoda, Hiroshi Motoda 97

Knowledge Mediation

Connecting Keywords Through Pointer Paths over the Web
Mina Akaishi, Nicolas Spyratos, Koichi Hori, Yuzuru Tanaka 115

Querying with Preferences in a Digital Library
Nicolas Spyratos, Vassilis Christophides . 130

Interoperation of Web-Based Resources

An Enhanced Spreadsheet Supporting Calculation-Structure Variants,
and Its Application to Web-Based Processing

Aran Lunzer, Kasper Hornbæk . 143

X Table of Contents

Knowledge Federation over the Web Based on Meme Media
Technologies

Yuzuru Tanaka . 159

Knowledge Evolution

Towards Understanding Meme Media Knowledge Evolution
Roland Kaschek, Klaus P. Jantke, István-Tibor Nébel 183

Mechanisms of Knowledge Evolution for Web Information Extraction
Carsten Müller . 202

Author Index . 215

Text Mining Using Markov Chains
of Variable Length

Björn Hoffmeister1 and Thomas Zeugmann2

1 RWTH Aachen, Lehrstuhl für Informatik VI, Ahornstr. 55, 52056 Aachen
hoffmeister@i6.informatik.rwth-aachen.de

2 Division of Computer Science, Hokkaido University,
N-14, W-9, Sapporo 060-0814, Japan

thomas@ist.hokudai.ac.jp

Abstract. When dealing with knowledge federation over text docu-
ments one has to figure out whether or not documents are related by
context. A new approach is proposed to solve this problem.

This leads to the design of a new search engine for literature research
and related problems. The idea is that one has already some documents of
interest. These documents are taken as input. Then all documents known
to a classical search engine are ranked according to their relevance. For
achieving this goal we use Markov chains of variable length.

The algorithms developed have been implemented and testing over
the Reuters-21578 data set has been performed.

1 Introduction

When one is aiming at knowledge federation over the web, one is often looking
for information around a specific topic. In a first step, one may find one or
more papers dealing with the topic of interest. Then, the next task is to find
related papers. Another situation to which our research may apply is to enable
documents to communicate to one another when trying to form a knowledge
federation over the web. Again, in such cases it may be very important to answer
a question like “is document A on the same subject as document B?” If the answer
is affirmative, then a federation is made, otherwise it is rejected.

For dealing with such problems, we propose an approach based on Markov
Chains of variable length. We exemplify this approach by constructing a search
engine taking as inputs papers and returning a list of semantically related papers.

Currently used search engines do not take documents as input. They rely on
queries of one or a few words describing the desired information. Basically, there
are two different search strategies.

The first concept is based on catalogues. A catalogue contains similar objects,
e.g., web-sites about machine learning. Hence, a query to such a catalogue system
is answered with a certain set of catalogues. Each of them ideally carries objects
relevant to the query. Search engines in libraries and web directories like Yahoo!1

1 http://www.yahoo.com

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 1–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 B. Hoffmeister and T. Zeugmann

are based on this approach. The quality depends on the quality of the catalogues.
Producing good catalogues is still time consuming and expensive.

The second strategy is to perform a full-text search over all available doc-
uments. Common web search engines like Google2 and AltaVista3 are based
on this concept. The disadvantage of a full-text search is the large number of
matches. Therefore, a ranking is introduced and only the top ranked documents
are returned. Google’s main ranking criterion is the linkage rate of a web-site,
that is, the more pages link to the document or web-site the higher the rank.

AltaVista uses a syntactical concept. It ranks the results depending on criteria
like the positions of and distances between the queried words in the document.
So, the alignment of the words should reflect the relevance of the document.

Both strategies have their advantages and disadvantages. Moreover, both ap-
proaches fail, for example, if the query allows ambiguities (cf. [13]). And the
ranking criteria may overlook relevant documents or give them a low ranking,
since simple queries do not allow a fine-grained ranking of relevance.

Now, the idea is to combine the advantages of both approaches. Our search
engine takes a set of documents as query, classifies them, and ranks all the
documents known by the search engine according to their relevance. To receive
a ranking based on semantical relevance we use a model, which can keep more
of the meaning of a document than common data representation models.

Following Ron et al. [18], we tried to use the variable memory Markov model de-
fined as a prediction suffix tree (abbr. PST). So, we arrive at a Markov model with
variable memory, or n-gram VMM model for short which is used for text represen-
tation. The n-gram VMM model is learned by statistical inference, a special form
of inductive learning. Then we combine text retrieval and text classification.

We shortly outline the underlying mathematical background, describe the
workflow of the resulting search engine, and report experimental results.

2 Preliminaries

Natural language is the most common form to exchange information between
human beings, e.g., news stories are published in natural language as well as
scientific papers. These documents often contain additional information encoded
in structured text, like tables or formulas, or in graphical form. However, we shall
only use the text in a document. Such a reduction may waste information. But
for the particular setting we study within this paper, i.e., the Reuters Data set,
it is sufficient. Additionally, all documents in this data set are written in English.
Therefore, we restrict ourselves to deal with English texts.

We assume familiarity with formal language theory (cf., e.g., [9]). The word is
used as smallest unit. In the literature, one also finds many other possible atomic
units. Research has been done using sub-word units like letters or morphemes
on the one hand and multi-word units, i.e., combinations of one or more words,
on the other hand, e.g., see [13], [10], and [19].
2 http://www.google.com
3 http://www.av.com

Text Mining Using Markov Chains of Variable Length 3

We continue with technical notations. N = {0, 1, 2, . . .} denotes the set of all
natural numbers, and N+ = N \ {0}. By Σ we denote a fixed finite alphabet, Σ∗

denotes the free monoid over Σ, and Σ+ = Σ∗ \ {ε}, where ε is the empty word.
An n-gram is a string of n ∈ N+ concatenated letters. The set of all n-grams
over Σ is denoted by Σn, where Σ0 = {ε}. We use Σ≤n to denote

⋃n
i=1 Σi.

Our alphabet is the set of all English words, i.e., a suitable subset of the
English vocabulary which we denote by V. Thereby we have to assure that V is
a set of indivisible symbols such that there exist an one-to-one mapping between
the symbols in V and the words in the English dictionary. The words of the
vocabulary are written in another alphabet which we denote by A. The relation
between a word symbol in V and its representation in A

+ is expressed by a
mapping ω : V → A+, where ω(·) is injective. This can be easily achieved by
introducing a delimiter symbol β such that β /∈ A.

Note that we use the term word to refer to member of V. Therefore, an n-gram
s = σ1 . . . σn, σi ∈ V, 1 ≤ i ≤ n, is a concatenation of n words and a string refers
to any n-gram, n ∈ N. A phrase is a meaningful concatenation of two or more
words; technically any n-gram, n > 1, occurring in a document is a phrase. And
finally, a term is either a word or a phrase. A document is then a sequence of
sentences, where a sentence is a concatenation of words from V.

For dealing with document classification and retrieval we use probabilistic lan-
guage models. The idea is that documents dealing with different subjects also
use a different subset of the vocabulary V and even different phrases over these
subsets. For example, a document about stock exchange might contain words like
“hausse” and “baisse”, which will almost never appear in a text about machine
learning. So, the observation is that texts about different subjects differ in the
used words. Furthermore, terms like “machine learning” or “conditional mutual
information” are surely not part of texts about stock markets, but the single
words “machine”, “learning”, “conditional”, “mutual”, and “information” may oc-
cur in such a text. Moreover, the idea is to look at how likely a word is, if the
previous words are known. In a text about machine learning it is very likely that
“machine” is followed by “learning”, where in a text about stock market exchange
it is probably followed by “manufacture” or “supplier”, but not by “learning”.

The task of predicting the next word given the previous words is called lan-
guage modeling task and a model solving the task is called a generative model,
see [13] and [8]. Therefore, we continue with the following definitions.

Definition 1 (Stochastic model). A stochastic model or process is a sequence
of random variables (Xt)t∈N.

Let us assume every random variable in (Xt)t∈N has the same range X . Thus,
the statistical properties of (Xt)t∈N are completely determined by the nth-order
probability distribution p(x0, x1, . . . , xn) := P (X0 = x0, X1 = x1, . . . , Xn = xn),
xi ∈ X , 0 ≤ i ≤ n, n ∈ N, see [16].

Moreover, we use L to denote the language used by subject S, i.e., L ⊂ V∗. We
then expect two documents to be about the same subject and hence semantically
related, if the subjects of the documents use the same language. But we shall use
probabilities instead of absolute statements. That is, we do not wish to decide

4 B. Hoffmeister and T. Zeugmann

whether or not a string or a sentence is in L. Instead the language model we are
aiming at returns for every string s ∈ V∗ the probability for s to be in L.

Let S be a subject, let L be the language of S, and let pS be the probability
distribution underlying L. Furthermore, let M be a generative model for S. Thus,
M solves the language modeling task for S, if pS(σ|s) = pM (σ|s) for every σ ∈ V

and for every s ∈ V
∗, where s is the sequence of all preceding words. Obviously,

if M solves the language modeling task for S, the strings generated by M are
distributed according to pS and hence M is a probabilistic language model for S.

How many of the previous words are necessary for making a good prediction
for the next word? The surprising answer is: most often only a few. For example,
if we see the word “machine” in a text about machine learning, “learning” is very
likely to be the next word, and knowing the words previous to “machine” does
not provide much additional information about the likeliness. Manning et al.
[13] claim that it takes quite a big effort to beat a generative model for natural
language, which predicts the next word on the previous two words.

In general, good estimations for the next word in natural language are context
dependent. An example is provided by this text. As mentioned before, the word
“machine” is very likely to be followed by “learning”; but what about “Markov”?
In the following, the words “model” and “chain” occurs after “Markov”, but the
3-gram “variable memory Markov” is always followed by “model”. Hence, we want
a model, which can capture this property of natural language.

The model which has the desired properties, is an n-gram Markov model
with variable memory, n-gram VMM model for short, which is defined by a
variable memory Markov model, VMM model for short. A VMM model in turn
is a special kind of the well-known Markov model. So, first Markov models are
shortly repeated, followed by the definition of the VMM model, from which we
derive the n-gram VMM model. In addition, the classical n-gram Markov model
is presented and compared to our model, which proves to be superior.

If we regard generative models as stochastic processes, any random variable
of the process has the property of only depending on the previous variables.
A special kind of those dependencies is captured by the Markov model, where
a random variable depends only on its direct predecessor. We shall see that,
despite this restriction, the Markov model is a suitable base for a generative
model for a language. In terms of a Markov model we call the value of a random
variable a state and its range state space.

Definition 2 (Markov model). Let (Xt)t∈N be a stochastic model and let X
be the state space for all random variables Xt, t ∈ N. (Xt)t∈N is a Markov model,
iff it meets the Markov assumption

P (Xt+1 = xt+1|X0 = x0, . . . , Xt = xt) = P (Xt+1 = xt+1|Xt = xt) . (1)

Let p(·|·) be a function p : X × X → [0, 1]. The Markov model (Xt)t∈N is
homogeneous, iff it fulfills the time invariance assumption

P (Xt+1 = xt+1|Xt = xt) = p(xt+1|xt), for every t ∈ N. (2)

p is the Markov core, where p(x|y) ≥ 0 and
∑

x∈X p(x|y) = 1 for all x, y ∈ X .

Text Mining Using Markov Chains of Variable Length 5

If a random variable depends only on its predecessor, the question remains of
how to predict the state of the initial random variable X0. This is done by a
special initial distribution. A Markov model together with an initial distribution
for X0 leads to the definition of a Markov chain. We follow the definition given
by [4], because it fits our purpose best. Other definitions do not restrict Markov
chains to be homogeneous, e.g., see [2].

Definition 3 (Markov chain). A Markov chain is a homogeneous Markov
model (Xt)t∈N with state space X , Markov core p and initial probability distrib-
ution π, where X0 is distributed according to π.

Before we continue with the definition of the variable memory Markov model, we
use the Markov chain to define a first probabilistic language model, the classical
n-gram Markov model. It shows how to use a Markov model to derive a language
model; the n-gram VMM model will be defined analogously. We shall also use it
to point to the advantages of our model.

The n-gram Markov model is a generative model predicting the next word in
dependence on the previous n words. Since a Markov chain, by its definition,
predicts the value of a random variable only on the value of its direct predecessor
the following construction is necessary which uses overlapping random variables.

Let (Σt)t∈N be a sequence of random variables, where each random variable in
(Σt)t∈N has range V. We define a second sequence of random variables (St)t∈N,
where each random variable in (St)t∈N has range Vn, n ∈ N+. The relation be-
tween (Σt)t∈N and (St)t∈N is given by the definition of the following equivalence.
Let s be an n-gram and let s = σ0σ1 . . . σn−1, σi ∈ V, 0 ≤ i < n. Then,

St = s
def⇐⇒ Σt = σ0, Σt+1 = σ1, . . . , Σt+n−1 = σn−1, (3)

for every t ∈ N. Thus, the random variables St overlap, i.e., St depends on
its predecessors, where the dependency is completely described by the direct
predecessor St−1, t ∈ N+.

St contains the information about n words and hence, for predicting the value
of Σt+n given the previous n words, the knowledge of the value of St is sufficient.
We express the probability of the value of Σt+n in terms of St and St+1 as follows.
Let St = s0, let St+1 = s1, and let s0 = σ0σ1 . . . σn−1, where s0 and s1 in Vn,
σi ∈ V, 0 ≤ i < n. From (3) it follows that s1 = σ1 . . . σn−1σn, σn ∈ V, and hence

P (St+1 = s1| St = s0)
=P (Σt+1 = σ1, . . . , Σt+n−1 = σn−1, Σt+n = σn

|Σt = σ0, Σt+1 = σ1, . . . , Σt+n−1 = σn−1)
=P (Σt+n = σn| Σt = σ0, Σt+1 = σ1, . . . , Σt+n−1 = σn−1)
=P (Σt+n = σn| St = s0), for every t ∈ N .

(4)

Obviously, (St)t∈N fulfills the Markov assumption and thus we see how a
Markov chain can be used to predict a word in dependence on the previous
n words. Thus, we arrive at the following definition.

6 B. Hoffmeister and T. Zeugmann

Definition 4 (n-gram Markov model). Let S denote a subject and let pS

be the probability distribution of the language of S. Furthermore, let (St)t∈N

be a Markov chain with state space Vn, Markov core p and initial probability
distribution π. (St)t∈N is called n-gram Markov model for S, iff

pS(σ0σ1 . . . σm−1) = π(s0)p(s1|s0)p(s2|s1) . . . p(sm−n|sm−n−1), (5)

where si ∈ Vn, si = σiσi+1 . . . σi+n−1, 0 ≤ i ≤ m − n, for all m-grams
σ0σ1 . . . σm−1 ∈ Vm, m ∈ N, m ≥ n.

Because pS is to fulfill Kolmogorov’s consistency condition the initial probability
distribution π must have the following property, see [1].

Let s = σ1σ2 . . . σn, σi ∈ V, 1 ≤ i ≤ n, be an n-gram. Furthermore, let suff(s)
denote the longest proper suffix of s, i.e., suff(s) = σ2 . . . σn. Then π must fulfill
the equation

π(suff(s)σ) =
∑
σ′∈V

p(σ|σ′suff(s)) π(σ′suff(s)),

for every s ∈ V
n, where σ ∈ V. We get the desired property, if we define

π(σ1 . . . σn) as P (S1 = s), where s = σ1 . . . σn for all n-grams σ1 . . . σn ∈ Vn.
Now, we have a first probabilistic language model. But the size of the state

space is by definition |V|n. This will lead to problems if n ≥ 2 when one wants to
learn such a model and the documents are too short (cf., e.g., [2]). For seeing the
problem, note that a normal vocabulary of natural language has a size of more
than 20.000 words. So, in order to estimate all probabilities described above for
an 2-gram Markov model one needs a sample of more than 20.0003 = 8 × 1012

words. Obviously, we normally do not possess such a large sample.
Therefore, we want to use the variable memory Markov model which has been

defined in a different context by Ron et al. [18]. A variable memory Markov model
is defined as a prediction suffix tree(PST).

Definition 5 (suffix tree). Let Σ be an alphabet, let T be a tree and let E
denote the set of edges between the nodes in T . Furthermore, let each edge be
labeled by a symbol σ ∈ Σ and each node by a string s ∈ Σ∗. The two functions
lE : E → Σ and lT : T → Σ∗ return the label of an edge and of a node,
respectively. T is a suffix tree over Σ, iff it has the following properties:

i) T has degree |Σ|.
ii) The root node n0 of T has label ε.
iii) For every node nl ∈ T , l ∈ N, and n0 → n1 → . . . → nl−1 → nl, the walk

from the root node n0 to node nl, the label of nl equals the concatenated labels
of the passed edges, i.e., lT (nl) = lE(e0,1) lE(e1,2) . . . lE(el−1,l)

iv) Neither two edges of one node nor two nodes have the same label.

Definition 6 (next symbol probability function). Let Σ be an alphabet and
let γs, s ∈ Σ∗, be a function. The function γs is called next symbol probability
function over Σ, iff it defines a probability distribution over Σ.

Text Mining Using Markov Chains of Variable Length 7

Definition 7 (prediction suffix tree). Let Σ be an alphabet and let T be a
suffix tree over Σ. T becomes a prediction suffix tree by expanding the label of
every node in T to (s, γs), where s is the label of the node in the suffix tree and
γs is a next symbol probability function over Σ.

For the sake of readability, we use the string s ∈ Σ∗ synonymously for the
label of a node and for the node itself. Ron et al. [18] proved the following for
VMM models. Every VMM model can be described by a Markov chain, whose
size grows exponentially in the maximum depth of the VMM model. And almost
every Markov chain can be described by an VMM model. In particular, an n-
gram Markov model can be simulated by a VMM model.

Let T be a VMM model over Σ with maximal depth n. A similar VMM
model T̃ over Σ with maximal depth n can be learned with arbitrary precision
from an example generated by T in linear time in the length of the example.
The sufficient length of the example is bounded by a polynomial function, which
depends on the number of nodes |T |, where we assume |T | ≥ |Σ| and |T | ≥ n,
and on the desired precision.

Using the terminology of Markov models, we call the set of nodes in an VMM
model state space and a single node state.

Now we have the desired model, which uses a variable amount of memory.
The last step is to define a language model, the n-gram VMM model, which is
based on a VMM model.

Definition 8 (n-gram Markov model with variable memory). Let S de-
note a subject and let pS be the probability distribution of the language of S.
Furthermore, let T be a VMM model over V having maximal depth n.

T is called n-gram Markov model with variable memory, or n-gram VMM
model for short, for S iff

pS(σ0σ1 . . . σm−1) = γs0(σ0)γs1 (σ1)γs2(σ2) . . . γsm−1(σm−1), (6)

where si, 0 ≤ i ≤ m − 1, is the longest suffix of σ0σ1 . . . σi labeling a node in T ,
for all m-grams σ0σ1 . . . σm−1 ∈ Vm, m ∈ N, m ≥ n.

So, the state space of the n-gram VMM model is a subset of Vn, whereas, by
Definition 4, the state space for the n-gram Markov model is the full set Vn.

Here again, we can derive a special property, which T must have for pS to
fulfill Kolmogorov’s consistency condition.

Lemma 1. Let T be an n-gram VMM model over V. Then the next probability
function γs must fulfill the equation

γsuff(s)(σ) =
∑
σ′∈V

γσ′suff(s)(σ), (7)

for each s ∈ V+ labeling a node in T and for every σ ∈ V.

From the definition of the conditional probability it follows that p(σ|s) equals
γs′(σ) for every σ ∈ V and every s ∈ V

n, n ∈ N, where s′ is the longest suffix

8 B. Hoffmeister and T. Zeugmann

of s labeling a node in T , and p(s) > 0. This notation immediately shows that
we have a probabilistic language model, where the prediction of the next word
depends on a variable number of previous words.

Let us assume that we want to learn the n-gram VMM model TS , which
describes the probability distribution of the language of the subject S. Learning
is done from sample strings, where a sample string t for S, t ∈ V

∗, is just a
finite string generated by TS . According to Definition 8, the value γs(σ) equals
pS(σ|s), which in turn equals approximately P̃t(σ|s) for every σ ∈ V and every
s ∈ V≤n, if only t is sufficiently large. P̃t(σ|s) denotes the conditional empirical
probability of σ given s achieved from t.

In order to derive the conditional empirical probabilities we need to count
(n + 1)-grams. The function #n+1

t (·) counts the number of occurrences of a
certain (n + 1)-gram in the sample string t and is defined as

#n+1
t (s) := the number of occurrences of s in t ,

where s ∈ Vn+1. Furthermore, let Nt be the number of all (n + 1)-grams in t.
Now, we are able to define the empirical probabilities for (n+1)-grams and from
there we derive the desired conditional empirical probabilities:

P̃t(sσ) :=
#n+1

t (sσ)
Nt

, P̃t(σ|s) =
P̃t(sσ)∑

σ′∈V

P̃t(sσ′)
=

#n+1
t (sσ)∑

σ′∈V

#n+1
t (sσ′)

,

where s ∈ Vn and σ ∈ V. The conditional empirical probabilities of lower order
are derived by the following recursion:

P̃ (σ|suff(s)) =
∑
σ′∈V

P̃ (σ|σ′suff(s))

So,
∑

s∈Vn+1 P̃t(s) = 1 holds and therefore Lemma 1 is fulfilled by construction.
A catalogue or class is a collection of related subjects, e.g., if the subject

of a document is “pruning algorithms for decision tree learning”, it might be
part of the classes “decision tree learning” and “machine learning”. Obviously,
most classes can be divided into subclasses yielding a hierarchy of classes, e.g.,
“decision tree learning” is a subclass of “machine learning”. Hence, a subject can
be viewed as the indivisible element on the bottom of a class hierarchy.

A class c is a set of documents, i.e., c = {d0, d1, . . . , dq}, q ∈ N. Let Si be
the subject of document di, let LSi be the language of Si, and let pSi be the
probability distribution underlying LSi , 0 ≤ i ≤ q. So, the language of c is given
by Lc =

⋃q
i=0 LSi . We denote the probability distribution underlying Lc by pc.

Obviously, if each probability distribution pSi can be described by an n-gram
VMM model, pc can be described by an n-gram VMM model, too.

The problem of finding the class a document is part of is known as the text
classification task. The text classification task consists of a set of classes C =
{c0, c1, . . . , cr}, r ∈ N, a set of documents D, and a function k : D → {0, 1, . . . , r}
called classification rule. D is the set all documents such that each document

Text Mining Using Markov Chains of Variable Length 9

d ∈ D belongs to exactly one class in C. Then, one wants to find a classification
rule kopt approximating ktrue best, where ktrue returns the correct class label
for each document in D, i.e., if d ∈ D belongs to ci ∈ C, then ktrue(d) = i.

The definition of the best approximation varies; often one tries to minimize
the error rate defined as the ratio of misclassifications to the total number of
classifications. We follow this definition, because there exists a classification rule
known as Bayes’ classification rule that achieves the minimal error rate, if p(c|d)
is known for every c ∈ C and for every d ∈ D.

Normally, the classification rule does not work on the documents and classes
themselves, but on a model for either the classes or for both, classes and doc-
uments. A text classifier is defined as a 3-tuple (C, M, k) consisting of a set of
classes C, a model M , and a classification rule k, where k is performed on M .
If k is optimal for every set of classes with respect to M , (C, M, k) is called an
optimal text classifier. If k is optimal on the documents and classes themselves,
i.e., k does not use a model, then k is called a perfect text classifier, see [5].

Finally, we formalize a search engine. In general, a search engine works as
follows. The users states a query, the search engine estimates the relevance of
each document to the query, the documents are sorted according to the estimates,
and finally the list of the sorted documents are returned to the user. In practice,
the list is usually truncated but it should contain the maximal possible number of
relevant documents. We use the key concepts of text retrieval for the definition of
a search engine. Note that our search engine uses queries consisting of documents.

Let Q be a nonempty, finite set of documents, we call Q a query. Let D be
a finite, nonempty set of documents, where D is split into two sets R and N.
R is the set of all documents in D being relevant to query Q and N = D \ R
is the set of all irrelevant documents. A text retrieval system is an algorithm
which assigns a rank r ∈ {1, 2, . . . , |D|} to each document in D such that no two
documents get the same rank, where we refer to 1 as the highest rank. A search
engine is just a text retrieval system.

Let Dn ⊂ D be the set of the n documents having the highest ranks. A text
retrieval system is called optimal, if

|Rn| is maximal for all n ∈ {1, 2, . . . , |D|} for every query Q .

Similar to text classification, we distinguish between an optimal and a perfect
text retrieval system. An optimal text retrieval system performs the ranking task
on models of the documents in D. A perfect text retrieval system achieves the
optimal result on the documents themselves. Since we use n-gram VMM model
as a model for a document we have probabilistic text retrieval system. For a
probabilistic text retrieval system the optimum criterion becomes

E[|Rn|] =
∑

d∈Dn

P (R|d) is maximal for all n ∈ {1, 2, . . . , |D|},

where P (R|d) is called probability of relevance. Robertson [17] has shown that
such an optimal probabilistic text retrieval system exists and that it can be
derived by the probability ranking principle(PRP). A short definition of the PRP
is given in [13], p. 538.

10 B. Hoffmeister and T. Zeugmann

Probability Ranking Principle. Ranking documents in order of decreasing
probability of relevance is optimal.

Therefore, our goal in a probabilistic text retrieval system is to find a suitable
model for estimating the probabilities of relevance.

We use the following two observations. First, if d and the documents in Q are
about the same subject, d is with high probability relevant to Q. Note that we
model d and each document in Q by a n-gram VMM model and compare these
n-gram VMM models. If the n-gram VMM models are similar, we expect d to be
in R.

Second, normally d and the documents in Q belong to the same class, if d
is relevant to Q and vice versa. We shall use a text classifier based on n-gram
VMM models to determine whether or not d and Q belong to the same class.

3 Learning the N-Gram VMM Model

A language learner is an algorithm learning the probability distribution under-
lying a language. We define it as 5-tuple (TS , V, n, H, L). TS = {d0, d1, . . . , dq},
q ∈ N, is a set of documents called training set for S. V = {w0, w1, . . . , wk},
k ∈ N, is an alphabet; in our setting we use the English vocabulary. n ∈ N+ is
the order of the model to be learned, i.e., we will learn n-gram VMM models,
and H = {T : T is an n-gram VMM model} is the hypothesis space.

L : TS → H is the learning algorithm. Let L ⊂ V∗ be the language of subject
S and let p the probability distribution underlying L. The aim of L is to map the
training set TS to the n-gram VMM model T̃S ∈ H approximating p best. Often,
TS consists only of a single document d. In that case, we denote the outcome of
L equally as T̃d. We present two algorithms for learning T̃S , the CPR-principle
and the LLR-principle. Both algorithms define different success criteria.

Next, we define a discriminative learner for a multiclass model. In terms of
natural language processing discriminative learning consists of solving the text
classification task, i.e., to find that multiclass model having most discriminative
power among C, where C is a set of classes.

In particular, we use a collection of n-gram VMM models, one for each class
in C, as multiclass model. Bayes’ classification rule is used for classification
(cf. Mitchell [15]). The learner is called multiclass learner. We define it as a
6-tuple (C,TC, V, n, H, L). Here C = {c0, c1, . . . , cr}, r ∈ N is a set of classes
or categories. Furthermore, TC = {Tc0 ,Tc1 , . . . ,Tcr , } is the training set for C
and consists of a training set for each class in C, where Tci = {d0, d1, . . . , dqi},
qi ∈ N, is a training set for class ci, ci ∈ C.

V, n, and H are defined in the same way as for the language learner.
L : TC → Hr is the learning algorithm. The result of L is an n-gram VMM

model for each class in C. That is, L maps TC to (T̃c0 , T̃c1 , . . . , T̃cr), T̃ci ∈ H,
0 ≤ i ≤ r, where T̃ci is the model for class ci. We refer to T̃ci as discriminative
class model or just as class model.

Both, the language learner and the multiclass learner, learn by statistical in-
ference. Here we have to approximate the probability distribution of a language.

Text Mining Using Markov Chains of Variable Length 11

Let L ⊂ V∗ be a language and let p be the probability distribution underlying
L. Let T = {d0, d1, . . . , dq}, q ∈ N, be a sample or training set for L. Therefore,
each document di ∈ T, 0 ≤ i ≤ q, consists of samples taken from L. Formally, a
document di = (tij)o

j=0, o ∈ N, is a list of sentences, where each sentence is in
L, i.e., tij ∈ L for every i ∈ {0, 1, . . . , q} and for every j ∈ {0, 1, . . . , o}.

Furthermore, we assume that the sentences are mutually independent. The
goal is to learn p from the samples in T. Without prior knowledge the relative
frequencies in T, i.e., the empirical probability distribution, are most likely to
equal p. We gain the empirical probability P̃ (s) for an n-gram s ∈ V

n by com-
puting the ratio between the number of occurrences of s in T and the total
number of n-grams in T. The number of occurrences of s in training set T is
denoted by #T(s), where

#T(s) :=
q∑

i=0
#di(s), T = {d0, d1, . . . , dq},

#di(s) :=
o∑

j=0
#tij (s), di = (tij)o

j=0,

#tij (s) := the number of occurrences of s in tij , tij ∈ V∗.

(8)

The number of all n-grams is denoted by NT =
∑

s∈Vn #T(s).
With the help of the counts we can calculate the empirical probabilities for

all l-grams, 1 ≤ l ≤ n. Let σi ∈ V, 1 ≤ i ≤ n, the empirical probabilities are
calculated as

P̃ (σiσi+1 . . . σn) =

⎧⎨
⎩

#T(σ1σ2...σn)
NT

, if i = 1,∑
σ∈V

P̃ (σσiσi+1 . . . σn), if 1 < i ≤ n, (9)

where P̃ (ε) := 1.
Unfortunately, the empirical probability distribution is not a good estimator

for the distribution of natural language, because of the sparse data problem. To
overcome the problem we smooth the empirical probabilities, i.e., we assign a
probability greater than zero to every l-gram, 1 ≤ l ≤ n. We use a common
smoothing technique known as Lidstone’s law, see [13]. The smoothed empirical
probability PLid(s) for an l-gram s, 1 ≤ l ≤ n, is calculated as

PLid(s) := μP̃ (s) + (1 − μ)
1

|V|l , μ =
NT

NT + λ|V| , (10)

where PLid(ε) := 1. The parameter λ ∈ (0, ∞) is a constant, which is most often
set to 0.5. Obviously, P̃ (s) equals PLid(s) for n → ∞.

For learning an n-gram VMM model we need to estimate conditional prob-
abilities. We derive the estimate for the conditional probability σ ∈ V given
s ∈ V≤n in the following way. Let σi ∈ V, 1 ≤ i ≤ n + 1. The conditional
empirical probabilities of σn+1 given the previous up to n words is computed as

PLid(σn+1|σiσi+1 . . . σn) =
PLid(σiσi+1 . . . σnσn+1)∑
σ∈V

PLid(σiσi+1 . . . σnσ)
, (11)

where PLid(σn+1|ε) = PLid(σn+1).

12 B. Hoffmeister and T. Zeugmann

Now, we are ready to present the learning algorithms. We use two already
known algorithms and a new one. The existing algorithms are the CPR-principle
and the MMI-principle. The CPR-principle has been introduced for learning the
probability distribution of a language and the MMI-principle has been intro-
duced for learning class models.

The new one is the LLR-principle. There are two instances of the LLR-
principle, one for learning the probability distribution of a language and one
for learning class models.

3.1 The CPR-Principle

The CPR-principle was introduced by Ron et al. [18] for learning a probabilis-
tic language model. The learner consists of (TS , V, n, H, LCPR). The goal is to
approximate p, the probability distribution of L ⊂ V∗, where L is the language
used by subject S.

Ron et al. [18] make the simplifying assumption that p can be described by
an n-gram VMM model TS ∈ H. Henceforth, let T̃S ∈ H denote the n-gram
VMM model learned by LCPR from training set TS . LCPR aims to minimize
the divergence between TS and T̃S , where the divergence is measured in terms
of the Kullback-Leibler (KL) divergence defined as

D(p‖q) =
∑
x∈X

p(x) log
p(x)
q(x)

, where p and q (12)

are two probability distributions defined over the finite, nonempty set X .
Ron et al. [18] proved that the KL divergence between TS and T̃S converges

to zero for sufficient large training sets.
The main idea of the algorithm introduced by [18] is to add a node s ∈ V≤n

into T̃S , if P̃ (σ|s) > P̃ (σ|suff(s)) for any σ ∈ V. More precisely, s is added if

P̃ (σ|s)
P̃ (σ|suff(s))

≥ ε2, s ∈ V
≤n, ε2 ∈ [1, ∞), (13)

for any σ ∈ V. Because of the equation, we termed the algorithm the conditional
probability ratio (CPR) principle.

The next symbol probabilities for each node in T̃S are set to the corresponding
smoothed conditional empirical probabilities. If we would use the unsmoothed
probabilities, the divergence between TS and T̃S would not converge to zero.
This is caused by the fact that the KL divergence between TS and T̃S becomes
infinite if TS assigns a probability greater than zero to an n-gram s, while T̃S

assigns zero probability to s; see [18] for further details.

3.2 The MMI-Principle

The MMI-principle has been introduced by Slonim et al. [19]. In contrast to
the CPR-principle the MMI-principle aims to learn class models. Therefore, the
learner consists of (C,TC, V, n, H, LMMI).

Text Mining Using Markov Chains of Variable Length 13

The result of LMMI is a multiclass model consisting of an n-gram VMM model
for each class in C. The class model for class c ∈ C is used to calculate the
probability that a document belongs to c. Thus, the goal is to learn those class
models minimizing the classification error rate. More precisely, the algorithm
proposed by [19] aims to minimize Bayes’ error rate. For information about
Bayes’ classification rule and Bayes’ error rate see e.g., [15].

Let D be a random variable whose range is the set of all documents and let C
be a random variable with range C. From the definition of Bayes’ classification
rule it follows that Bayes’ error rate decreases, if the uncertainty in p(C|D) is
reduced, for details see [7].

The uncertainty of the probability distribution underlying a random variable
is measured in terms of the entropy, see e.g., [16]. Let X and Y be two random
variables. Henceforth, we denote the entropy of X by H(X) and the mutual
information between X and Y by I(X ; Y), where I(X ; Y) := H(X) − H(X |Y).
Thus, what we need is a way to minimize H(C|D). We can model a document
as a sequence of random variables (Si)o

i=1, o ∈ N+, where each Si, 1 ≤ i ≤ o,
has range V

+. We assume the random variables Si, 1 ≤ i ≤ o, to be equally
distributed and mutually independent.

Let us assume that every sentence has exactly length m. Consequently, Si =
Σ1, Σ2, . . . , Σm for every i ∈ {1, 2, . . . , o}, where Σj, 1 ≤ j ≤ m, is a random
variable with range V.

If we assume that all documents have exactly o sentences, we derive the
following equation, see [16].

H(D) = H((Si)o
i=1)

= oH(Σ1, Σ2, . . . , Σm)
= moH(Σn+1|Σ1, Σ2, . . . , Σn),

(14)

where the last step follows from the fact that Σ1, Σ2, . . . , Σm is distributed ac-
cording to an n-gram VMM model which in turn fulfills the Markov assumption.
We simplify the notation by introducing two extra random variables, Σ := Σn+1
and S := (Σ1, Σ2, . . . , Σn). Now, we obtain our main result.

H(C|D) = H(D|C) + H(C) − H(D)
= H(C) − mo (H(Σ|S) − mo H(Σ|S, C))
= H(C) − moI(Σ; C|S),

(15)

where the equality of H(D) and moH(Σ|S) as well as the equality of H(D|C)
and moH(Σ|S, C) follows from (14).

We conclude, maximizing I(Σ; C|S) minimizes H(C|D) and therefore mini-
mizes Bayes’ error rate, too.

We call the resulting algorithm the maximum mutual information (MMI)
principle, as it tries to maximize I(Σ; C|S). Further details are omitted due to
the lack of space.

14 B. Hoffmeister and T. Zeugmann

3.3 The LLR-Principle

The LLR-principle is a new way either to learn an n-gram VMM model for a
subject or to learn n-gram VMM models serving as class models. The main mo-
tivation of the LLR-principle is a common drawback of the CPR- and the MMI-
principle. Both make the assumption that the training set is always sufficiently
large in order to get reliable estimates for the unknown probability distribution.
Let p be an unknown probability distribution and let us assume p is described
by the n-gram VMM model T . Furthermore, |T | denotes the number of nodes
in T . The size of the needed sample set for achieving reliable results for p is
bounded by a polynomial function over |T |, for details see [18]. In our setting
we have no knowledge about |T |, besides the fact that |T | is upper-bounded by
|V|n, but in general we do not possess a sample set larger than |V|n. Hence, we
normally cannot determine, whether or not the training set is sufficiently large.

So, what can happen if the training set is not large enough? Dependencies
might be preserved, which are true for the training set, but not for p, i.e., the
learned n-gram VMM model overfits. Overfitting in turn can reduce classification
and retrieval performance, see e.g., [15] and [12].

Thus, the idea of the LLR-principle is to add a node s only, if there is strong
evidence that s is an indispensable node in T . In particular, we use a statistical
test to determine whether or not s is indispensable.

First, we use the idea to learn the probability distribution of the language
of a subject S. Let (TS , V, n, H, LLLR) be the learner and let LLLR(TS) = T̃S .
Furthermore, let p be the probability distribution of the language used by subject
S. Thus, our goal is to approximate p.

Formally, we want to add a node s ∈ V≤n into T̃S , if p(σ|s) > p(σ) for any
σ ∈ V. In other words, we add s into T̃S , if the probabilities of some of the words
following s are not independent of s.

Since we do not know p(σ|s), we use the conditional empirical probability
achieved from TS as estimator for p(σ|s). Furthermore, we use a statistical test
to decide whether or not a dependency occurring in TS exists in p. Thus, we use
the following two hypotheses for the test:

H0: p(σ|s) = p = p(σ)
H1: p(σ|s) = p1 > p2 = p(σ) (16)

If the null hypotheses H0 is rejected for any σ ∈ V, we add s to T̃S .
As statistical test we use the log-likelihood ratio (LLR) test proposed in [3].
Dunning [3] applied the LLR-test on the task of finding dependencies between

words in texts written in natural language and compared it to Pearson’s χ2-test.
Especially for small word counts, i.e., for short samples, the LLR-test performed
superior to Pearson’s χ2-test.

The LLR-test seems to be the statistical test fitting best for finding depen-
dencies between words when dealing with small word counts (cf. [13, 20]).

[3] used p(σ|s) = p(σ|¬s) as null hypothesis, where p(¬s) := 1−p(s). However,
Dunning’s null hypothesis is equal to H0:

Text Mining Using Markov Chains of Variable Length 15

p(σ|s) = p(σ|¬s)
⇐⇒ p(σ|s) = p(¬s σ)

p(¬s)

⇐⇒ p(σ|s) = s′∈V
|s| p(s′ σ)−p(s σ)

1−p(s)

⇐⇒ (1 − p(s))p(σ|s) = p(σ) − p(s σ)
⇐⇒ p(σ|s) = p(σ)

Computing the test statistic proposed in [3] for H0, is done using the counts:

k1 := #TS (sσ), n1 := #TS (s), k2 := #TS (σ) − k1, n2 := NTS − n2

As estimates for the tested probabilities we simply use the empirical probabili-
ties. In terms of the above counts the estimates can be expressed as

p̃1 =
k1

n1
, p̃2 =

k2

n2
, p̃ =

k1 + k2

n1 + n2
.

Now, the test statistic for hypothesis H0 is calculated as

ξ = −2 log λ = 2 (log L(p̃1, k1, n1) + log L(p̃2, k2, n2)
− log L(p̃, k1, n1) − log L(p̃, k2, n2)), (17)

where L(p, k, n) := pk(1 − p)(n−k). For further details about the LLR-test and
the derivation of the LLR-test statistic, see [3].

The value λ is the ratio between the likelihood of H0 and the likelihood of H1.
So, λ decreases and thus ξ increases, if H1 is more likely than the null hypothesis
H0. Moreover, ξ approximates the χ2-distribution with one degree of freedom.

Putting it all together, we add s ∈ V≤n to T̃S , if ξσ|s ≥ (χ2
1)

−1(1 − α), α ∈
(0, 1), for any σ ∈ V. ξσ|s denotes the value of the LLR-test statistic computed
for σ and s. The complete algorithm is given in Figure 1.

In the algorithm, the parameter ε is the critical value for the χ2
1-distribution

for a chosen significance level α ∈ (0, 1), i.e., ε = (χ2
1)−1(1 − α).

The advantage of the LLR-principle is that a node is only added, if it is with
high probability an indispensable node in an n-gram VMM model describing p.
Unfortunately, some nodes may not be added even when they are necessary for
modeling a dependency in p. So, the question is if the learned n-gram VMM model
still fits for solving the text retrieval and text classification task, respectively.

In the worst case the learned n-gram VMM model T̃S consists only of the
root node, i.e., words are regarded as to be independent to one another. Hence,
T̃S can be described by a 0-gram VMM model. Bayes’ classification rule applied
to the 0-gram VMM model yields the naive Bayes classifier, which shows an
excellent performance for the text classification task, see e.g., [14, 15].

In fact, other classifiers and text retrieval systems assuming independence
between words got good results in text classification and text retrieval, see [10,
12, 13]. So, we expect the n-gram VMM model T̃S learned by the LLR-principle
to yield good results, even if some dependencies in p are not modeled by T̃S .

16 B. Hoffmeister and T. Zeugmann

First step (prediction suffix tree)
// initialize the prediction suffix tree T̃S

T̃S := {ε};
// build the prediction suffix tree T̃S

for (i = 1 to n) {
foreach (s ∈ V

i) {
ξmax := 0;
foreach (σ ∈ V) {

// test for a dependency in the language of S
k1 := #TS (sσ); n1 := #TS (s);
k2 := #TS (σ) − k1; n2 := NTS − n1;
p̃ := (k1 + k2)/(n1 + n2); p̃1 := k1/n1; p̃2 := k2/n2;
ξ := llr_test(p̃, p̃1, p̃2; k1, n1, k2, n2);
// find the maximal value for ξ

ξmax := max{ξ, ξmax};
}
// add only those nodes, which pass the test

if (ξmax ≥ ε) {
add s into T̃S;

}
}

}
Second step (next symbol probabilities)
// compute the next symbol probabilities
foreach (s ∈ T̃S) and (σ ∈ V) {

γ̃s(σ) := PLid(σ|s);
}

Fig. 1. Pseudo-code for the LLR-principle (subject case)

Next, we apply the LLR-test to the task of learning class models. The learner
consists of (C,TC, V, n, H, LMMI). Similar to the MMI-principle we aim to find
the suffix tree T̃ containing all the nodes, which have discriminative power among
C. Thus, we add a node s ∈ V≤n to T̃ , if s fulfills the following two requirements.

First, for some class c ∈ C there exist a dependency between s and the words
following s. This requirement yields the following hypotheses for a statistical test:

H1
0 : p(σ|s, c) = p = p(σ|c)

H1
1 : p(σ|s, c) = p1 > p2 = p(σ|c) (18)

Therefore, the first requirement is fulfilled, if the null hypotheses H1
0 is rejected

for any σ ∈ V and c ∈ C.
For testing the null hypotheses we apply the LLR-test on the training set TC.

Concretely speaking, for testing H1
0 for s ∈ V≤n, σ ∈ V, and c ∈ C the training

set Tc is used. From Tc we get the following counts needed for calculating the
LLR-test statistic:

k1 := #Tc(sσ), n1 := #Tc(s), k2 := #Tc(σ) − k1, n2 := NTc − n2

The value of the LLR-test statistic is computed by (17).

Text Mining Using Markov Chains of Variable Length 17

The second requirement is that a node s has discriminative power among C.
That is, a dependency between s and the words following s depends on C, too.
In other words, if p(σ|s, c) is equal for every c ∈ C and for every σ ∈ V, s has
no discriminative power among C.

We formalize the second requirement by the following hypotheses for a sta-
tistical test:

H2
0 : p(σ|s, c) = p = p(σ|s)

H2
1 : p(σ|s, c) = p1 > p2 = p(σ|s) (19)

Thus, if H2
0 is rejected for any σ ∈ V and c ∈ C, then the second requirement is

fulfilled.
For computing the LLR-test statistic for s ∈ V≤n, σ ∈ V, and c ∈ C we need

counts over the training set Tc and over TC. The number of occurrences of an
n-gram s ∈ Vn in the training set TC is defined as

#TC(s) :=
r∑

i=0

#Tci
(s), TC = {Tc0 ,Tc1 , . . . ,Tcr}, (20)

and hence NTC :=
∑r

i=0 NTci
. Consequently, the LLR-test is performed on:

k1 := #Tc(sσ), n1 := #Tc(s), k2 := #TC(σ) − k1, n2 := NTC − n2

If a node s ∈ V≤n fulfills both requirements, then s is added to T̃ . We omit
further details.

4 Text Classification and Text Retrieval

The text classification task consists of a set of classes C = {c0, c1, . . . , cr}, r ∈ N,
a set of documents D, and a function k : D → {0, 1, . . . , r} called classification
rule. D is the set of all documents d such that each d ∈ D belongs to exactly one
class in C. The aim of the text classification task is to find that classification
rule that approximates ktrue best, where ktrue returns the correct class label for
each document in D, i.e., if d ∈ D belongs to ci ∈ C, then ktrue(d) = i.

Function k only relies on the knowledge about C and hence, if the knowledge
about C is not sufficient for certain classifications, k is expected to make some
misclassifications. The classification rule theoretically making the least number of
misclassifications is called Bayes’ classification rule and it is denoted by kBayes.
The ratio of misclassifications made on average by Bayes’ classification rule is
called Bayes’ error rate. For further details see e.g., [15].

Let (C,TC, V, n, H, L) be an n-gram VMM model learner for class models,
where L(TC) = (T̃ci)r

i=0, T̃ci ∈ H, ci ∈ C, 0 ≤ i ≤ r. Furthermore, let k̃Bayes

be Bayes’ classification rule for C, where k̃Bayes uses T̃ci to estimate the value
of p(d|ci) for every ci ∈ C, 0 ≤ i ≤ r, and for every d ∈ D. We call the triple
(C, (T̃ci)r

i=0, k̃Bayes) nst order naive Bayes classifier, where the 0st order naive
Bayes classifier is a member of the family of the common naive Bayes classifiers.

18 B. Hoffmeister and T. Zeugmann

Following McCallum et al. [14] we also look at the commonly used multivariate
naive Bayes classifier and the multinomial naive Bayes classifier. Both classifiers
use the vector space model of V = {w0, w1, . . . , wk}, k ∈ N, to represent each
document in D. In the multinomial model the likelihood of d ∈ D, d = (tl)o

l=0,
tl ∈ V+, 0 ≤ l ≤ o, given class c ∈ C is

p(d|c) = Nd!
k∏

i=0

p(wi|c)vi

vi!
, Nd =

k∑
i=0

#d(wi), (21)

which is just the multinomial distribution. Let Tc be a training set for c. The
parameter p(wi|c), 0 ≤ i ≤ k, of the multinomial distribution are estimated by
the smoothed conditional empirical probabilities achieved from Tc.

Additionally, we shall use two classification rules relying on the vector space
model over V for comparative reasons, the k-nearest-neighbor (k-nn)-classifier
and the centroid based classifier(cf., e.g., [8] and [13]). The most common sim-
ilarity measure used in text classification and text retrieval is the cosine of the
angel between two vectors v and u in V . Therefore, we also use it. For further
details on the cosine function as similarity measure see e.g., [8, 13].

A drawback of the vector space model over V is its limited representation
power, as it only regards single words, i.e., 1-grams. There exist two commonly
used ways for improving the representation power: either to use the vector space
over all n-grams for an n ∈ N, n > 1, or the vector space over all l-grams,
1 ≤ l ≤ n. Both kind of vector spaces have been tested in practical experiments,
see e.g., [12, 6]. The results indicate that classification performance increases for
small n, but decreases for larger n; the reason is overfitting caused by the high
dimensionality of the vector space. The way to overcome the problem of high
dimensionality is to build the vector space only over those l-grams, 1 ≤ l ≤ n,
having relevance for classification. Many different approaches for measuring the
relevance of a single l-gram, 1 ≤ l ≤ n, have been proposed, see e.g., [6, 20].

Here, we examine two approaches, one based on mutual information, which
we derive from the MMI-learning-principle. The other one is based on statistical
tests and it is derived from the LLR-learning-principle.

The measures used for evaluating classification results are micro-averaged
precision/recall.

Last but not least, we use a probabilistic text retrieval system. Recall that a
query Q as a set of documents. For every query Q we split D into two sets, R
(the relevant documents) and N (the irrelevant ones). A text retrieval system
is an algorithm that assigns a rank r ∈ {1, 2, . . . , |D|} to each document in D
such that no two documents get the same rank, where 1 is referred to as the
highest rank. Informally speaking, an optimal text retrieval system makes at
any time and for every query the least number of wrong assignments of ranks.
A wrong assignment has happened, if a document in N gets a higher rank than
any document in R. Dn ⊂ D is the set of the n documents having the highest
ranks, i.e., the ranks 1 to n, and Rn = Dn ∩ R. A probabilistic text retrieval
system is called optimal, if

Text Mining Using Markov Chains of Variable Length 19

E[|Rn|] =
∑

d∈Dn

P (R|d) is maximal for all n ∈ {1, 2, . . . , |D|}, (22)

where P (R|d) is called probability of relevance. Robertson [17] has shown that
such an optimal probabilistic text retrieval system exists and can be derived by
the probability ranking principle(PRP). Thus, the performance of the system
relies on the reliability of our estimates for P (R|d).

In Section 2 we already presented two observations about d, Q, R, and hence
about P (R|d). First, d is probably in R, if d and the documents in Q are about
the same subject. Second, if d and the documents in Q belong to the same class,
we expect d to be in R, too. Both observation can be quantified and the results
are used to get an estimate for P (R|d). We omit details.

5 Implementation

Next, we outline the workflow of our search engine and take a short look at the
core algorithms used within the single steps of the workflow. Figure 2 shows the
workflow of the search engine and the single steps making up the workflow. Every
document processed by the search engine passes these steps with exception of
documents used for learning a class model, which pass only the first six steps.

We distinguish three levels of representation of a document. First, the docu-
ment is a collection of bits. In this step we extract the text of a document. Then
it has to be split into words and sentences for further processing.

On the multi-word level the computer has a more advanced view of the doc-
ument. Instead of single words, it regards l-grams, 1 ≤ l ≤ n, i.e., words are
regarded within their local context. In order to be able to receive l-grams we
need the sentences boundaries as we do not want to regard l-grams across mul-
tiple sentences.

The next level is the n-gram VMM model itself. Actually, our hope is to gain a
representation capturing the meaning of the document. However, we do not aim to
represent the semantic of a document in an operational form. That is, we cannot
answer the question “What subject do you deal with?”, but our hope is that we are
able to answer the question “Do you deal with the same subject as document x?”.

Next, we take a short look at the steps presented in Figure 2. The first task
is text extraction. In this step, we extract the parts of natural language within a
document. For documents published in HTML format, we use a simple HTML-
filter. The filter just removes all HTML-tags and all the text between HTML-
tags, which are known to mark structured text.

Scientific papers published in the Internet are normally encoded as postscript-
files or as PDF-files. The postscript- and the PDF-format are strongly related
and were invented to provide a good, platform independent readability of natural
and structured text for an human reader. The result is a format, which makes
automatic text extraction quite complicated.

Here, we use a two-step-process for text extraction. First, the ps2ascii tool
delivered with the ghostscript package4 is used to interpret the postscript-
4 http://www.ghostscript.com

20 B. Hoffmeister and T. Zeugmann

−gram counting, l 1 l n+1

word and sentence extraction

text retrieval

text classification

−gram VMM model learning

feature selection on a word level

text extraction

w
or

d
le

ve
l

m
ul

ti−
w

or
d

le
ve

l
"s

em
an

tic
"

le
ve

l

m
od

el
 le

ve
l/

feature selection on a multi−word level

n

< <

Fig. 2. Workflow of the search engine

document and to get a list of word fragments. The second step is done by a
self-written filter, which combines the fragments into words, finds paragraphs of
natural text, and removes words belonging to structures like formulas, etc.

In the next step, the extracted text is converted into unicode. Then we cut
the text into words and sentences. In English words are normally separated by
spaces. Hence, we regard every sequence of characters flanked by spaces as a
word. Finding sentences is not trivial mainly due to the fact that a period does
not necessarily mark the end of a sentence. We use an algorithm based on the
sentence boundary detection algorithm proposed in [13]. The algorithm uses
an heuristic approach, is fast and on common texts very reliable. After finding
sentence boundaries, all punctuation marks are removed.

Up to this point we used the English dictionary as vocabulary. Note that the
large size large size of the vocabulary and the resulting huge number of l-grams,
1 ≤ l ≤ n, can cause serious problems with respect to time and memory re-
quirements. In order to overcome the problem there exist a variety of techniques
to select those l-grams, 1 ≤ l ≤ n, being somehow relevant for learning the de-
sired n-gram VMM models and to discard all irrelevant ones. The general task
is called feature selection and is done as a pre-processing step before inferring
any models, see e.g., [13, 10]. In the workflow feature selection occurs on two
levels, on the word and on the multi-word level. At both levels, we use stopword
elimination and word frequency thresholding among others.

Text Mining Using Markov Chains of Variable Length 21

Then, we count all l-grams, 1 ≤ l ≤ n, in a sample set. After counting, l-
gram frequency thresholding is applied at the result list in order to remove all
l-grams occurring less than two times. The remaining frequencies are used to
compute the normal and the smoothed conditional empirical probabilities. The
probabilities and the counts are required for learning the n-gram VMM model.

Counting is probably the most important step in the workflow of the search
engine. It is most expensive in time and the structure build up over all l-grams
during the counting step is later on used for a fast find, calculation, and compar-
ison of l-gram frequencies and probabilities. Word counting is done by applying
a hash function which uses the single words as key and stores the counts in a
hash map. The resulting algorithm runs in time O(m) and uses O(m) memory,
where m is the number of words in the training set.

We can easily extend the approach for counting all l-grams, 1 ≤ l ≤ n. That
is, we count the number of occurrences of each l-gram, 1 ≤ l ≤ n, separately.
The resulting algorithm has a runtime of O(mn2) and needs O(mn2) memory,
but we can do better. We omit the details here.

The data structure developed for counting fits in general for a prediction suffix
tree(PST), too. With this in mind the objects stored in the array of hash maps
will serve as nodes and next symbol probabilities at the same time. This design
allows us to store a PST in a very compact manner. For learning, we use the
principles described in Section 3.

6 Experimental Results

We have used the Reuters-21578 data set for testing5. The data set consists of
21578 Reuters newswire stories from the year 1987 all related to financial topics.
In order to support retrieval and routing, Reuters defined a set of 135 category
labels. The stories have been manually indexed using these labels, where each
story may be indexed by zero, one, or several category labels.

Lewis was the first making extensive use of the Reuters data set for evaluating
text classification systems, e.g., see [11]. Henceforth, the data set has become a
standard benchmark for text classifiers, e.g., see [19, 10].

In general, we use the newswire stories as documents and the categories as
classes for our search engine. However, it is difficult to make a selection of docu-
ments for a training set and a test set, respectively, because many of the stories
are only of limited use or completely unusable. The most common way to split
the data set is the so called modified Apte split6, which we will use, too. It
defines a training set of 9603 documents and a test set of 3299 documents. The
remaining 8676 documents are not used, because of one or several of the following
reasons. They have no class label assigned, the assigned class label is obviously
false, or the document contains no text. Furthermore, Reuters allowed multi-
classification. Our text classification system is restricted to single-classification.
Thus, we only use the documents belonging exactly to one class.
5 http://www.daviddlewis.com/resources/testcollections/reuters21578/
6 http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt

22 B. Hoffmeister and T. Zeugmann

A single newswire story is often very short and consists only of one or a few
sentences; a story is on average 152 words long. Therefore, we normally cannot
learn an n-gram VMM model from a single or a few stories, because the limit-
edness of training data does not allow reliable statistical inference. Therefore,
we use only those Reuters categories as classes, where the training set provides
a sufficient large number of training documents. In particular, we only use the
ten most populous categories yielding a minimum number of 90 documents per
category. This approach follows several other studies like [10, 14, 19].

The ten categories are listed in the following table. Additionally, the number
of documents and words per category are given. Word counting is done without
prior feature selection, but every word was converted to lowercase.

number of number
category topic documents of words

earn Earnings and Earnings Forecasts 2840 221992
acq Mergers/Acquisitions 1596 192130

crude Crude Oil 253 50376
trade Trade 251 57693

money-fx Money/Foreign Exchange 206 35014
interest Interest Rates 190 22471

money-supply Money Supply 123 12605
ship Shipping 108 16488
sugar Sugar 97 17012
coffee Coffee 90 18757

So, we get a training set of 5754 documents and a test set of 2254 documents.
Without any kind of feature selection the vocabulary of the training set consists
of 37965 words and 2051584 different l-grams, 1 ≤ l ≤ 6, where we will not use
larger l-grams for testing.

The second consequence of the shortness of the newswire stories directly con-
cerns our text retrieval system. A single document is too small to be used
for learning an n-gram VMM model and hence we cannot use the KL diver-
gence based similarity measure to predict the similarity between two documents.
Therefore, we compute the vector space representation for each document and
use the cosine function as similarity measure. The following example shows the
difficulties in using such short documents as contained in the Reuters data set.
The example is taken from the used test set and belongs to “interest”.

Bundesbank’s Schlesinger says no plan to cut discount rate -
Nihon Keizai newspaper
Blah blah blah.
(Reuters-21578, NEW_ID=17445)

We present here only some text classification results due to lack of space. We
compare the nst order naive Bayes classifier learned by the MMI-principle with
the one learned by the LLR-principle. Additionally, for both principles we let

Text Mining Using Markov Chains of Variable Length 23

the nst order naive Bayes classifier compete against the centroid based and the
k-nn-classifier, where both use the vector space Vn

MMI(LLR).
We evaluate the general improvement gained by applying a learning algorithm.

Thus, we run Bayes’ classification rule without prior learning, i.e., we build a
prediction suffix tree containing a node s for each sσ occurring in the training
set, s ∈ V

≤n, σ ∈ V.
We use the following feature selection techniques on a word level. Every word

is converted to lowercase, every number is replaced by the word <NUMBER>,
word frequency thresholding is applied, and stopwords are eliminated. On a
multi-word level l-gram frequency thresholding, 1 ≤ l ≤ n, is applied. We used
this set-up for every text classification and text retrieval task reported here.

Table 1. Classification results. The values inside the table are micro-averaged preci-
sion/recall, where the column determines the used n-gram VMM model and the row
determines the used combination of decision rule and learning principle. Here, “Bayes”
is short for nst order naive Bayes classifier, “centroid” is short for centroid based clas-
sifier, and “1-nn” is short for k-nn-classifier, where k is set to 1.

n = 0 1 2 3 4 5
no learning

Bayes 0.95874 0.95209 0.9512 0.95164 0.95075 0.9512

MMI-principle

Bayes 0.95874 0.95874 0.95918 0.9543 0.95386 0.9543
centroid 0.48048 0.93966 0.93478 0.9299 0.9339 0.93256
1-nn 0.92902 0.92902 0.93523 0.93833 0.93789 0.937

LLR-principle

Bayes 0.95874 0.95608 0.95519 0.95608 0.95608 0.95563
centroid 0.48048 0.92414 0.90816 0.90595 0.90639 0.90639
1-nn 0.91926 0.92014 0.92103 0.9197 0.92014 0.92014

Furthermore, we use the micro-averaged precision/recall to measure the clas-
sification performance of a single combination of classification rule, learning prin-
ciple, and memory depth n. The micro-averaged precision and recall are equal
because of the single classification setting. However, for a single class precision
and recall are normally different.

Table 1 summarizes the results for all combinations of classification rule and
learning principle. All combinations were evaluated for n = 0 to 5.

References

[1] J. L. Doob. Stochastic Processes. Wiley, 1990.
[2] L. Dümbgen. Stochastik für Informatiker. Springer, 2003.
[3] T. E. Dunning. Accurate methods for the statistics of surprise and coincidence.

Computational Linguistics, 19(1):61–74, 1994.

24 B. Hoffmeister and T. Zeugmann

[4] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
Wiley, third edition, 1968.

[5] N. Fuhr. Probabilistic models in information retrieval. The Computer Journal,
35(3):243–255, 1992.

[6] J. Fürnkranz. A study using n-gram features for text categorization. Technical
report, Austrian Institute for Artificial Intelligence, 1998.

[7] A. Garg and D. Roth. Understanding probabilistic classifiers. In L. D. Raedt and
P. A. Flach, editors, Machine Learning: EMCL 2001, 12th European Conference
on Machine Learning, Freiburg, Germany, September 5-7, 2001, Proceedings, vol-
ume 2167 of Lecture Notes in Computer Science, pages 179–191. Springer, 2001.

[8] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press,
2002.

[9] M. A. Harrison. Introduction to Formal Language Theory. Addison Wesley, 1978.
[10] T. Joachims. Learning to Classify Text using Support Vector Machines: Methods,

Theory, and Algorithms. Kluwer Academic Publishers, 2002.
[11] D. D. Lewis. Feature selection and feature extraction for text categorization.

In Proceedings of Speech and Natural Language Workshop, pages 212–217, San
Mateo, California, 1992. Morgan Kaufmann.

[12] D. D. Lewis and K. S. Jones. Natural language processing for information retrieval.
Communications of the ACM, 39(1):92–101, 1996.

[13] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, 2002.

[14] A. McCallum and K. Nigam. A comparison of event models for naive bayes text
classification. In Proceedings of the AAAI-98 Workshop on Learning for Text
Categorization, 1998.

[15] T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.
[16] A. Papoulis. Probability, Random Variables, and Stochastic Processes.

WCB/McGraw-Hill, third edition, 1991.
[17] S. E. Robertson. The probability ranking principle in ir. Journal of Documenta-

tion, 33:294–304, 1977.
[18] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic

automata with variable memory length. Machine Learning, 25(2–3):117–149, 1996.
[19] N. Slonim, G. Bejerano, S. Fine, and N. Tishby. Discriminative feature selec-

tion via multiclass variable memory markov model. In C. Sammut and A. G.
Hoffmann, editors, Machine Learning, Proceedings of the Nineteenth International
Conference (ICML 2002), University of New South Wales, Sydney, Australia, July
8-12, 2002, pages 578–585. Morgan Kaufmann, 2002.

[20] Y. Yang. An evaluation of statistical approaches to text categorization. Informa-
tion Retrieval, 1(1/2):69–90, 1999.

Faster Pattern Matching Algorithm
for Arc-Annotated Sequences

Takuya Kida�

Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan
kida@ist.hokudai.ac.jp

Abstract. We present an improvement of pattern matching algorithm
for arc-annotated sequences. Arc-annotated sequences are used for rep-
resenting the structural information, e.g., RNA and protein sequences in
molecular biology. Given two sequences with arcs, a text of length n and
a pattern of length m, the problem is to determine whether the pattern
is an arc-preserving subsequence of the text. Although it is NP-complete
in a general case, an O(mn) algorithm has been proposed if the given
sequences have no crossing-arcs. Our contribution is to revise it and to
obtain more simple one. We also present our experimental results of the
running time.

1 Introduction

Knowledge look-up and matching is a key topic for knowledge federation over the
web. Information retrieval, document clustering, and data mining for knowledge
extraction are used as fundamental techniques for such purposes, and pattern
matching problem is among the most basic and important topics of them.

Although many researchers have tackled the problem and developed some
efficient algorithms so far [3, 7, 12], simple pattern matching algorithms are not
enough for such purposes, e.g., discovering a knowledge from large text data-
bases, connecting with a knowledge to another on the web, and so on. Tradition-
ally, however, the study of pattern matching has concentrated on simple and fast
search. From this viewpoint texts are treated as just a sequence of characters,
where any background knowledges and semantics of the texts are ignored, and
therefore we could obtain efficient algorithms.

In future, we need to do pattern matching with considering explicit or implicit
structures of the text in order to do more powerful and intelligent searching in
practical use. For example, semi-structured data such as XML and HTML files
have tree structures implicitly, where each tag in them corresponds to a node. In
such case, they are usually converted to explicit tree structures (DOM trees) and
then processed. On the other hand, a significant amount of domain knowledge
for textual information is becoming available online in the form of thesaurus or
taxonomy [2, 8] recently, and demands for searching that can incorporate with
� This research is supported by JSPS under Grant-in-Aid for Young Scientists (B)

(17700024).

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 25–39, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

26 T. Kida

A C G U C C G A A U U G AA C G U C C G A A U U G AA C G U C C G A A U U G A

Fig. 1. Arc-annotated sequence

A
C
C
A
C
G
C
U
U
A

A
G A C A C

C U
A
G
C

T ��
G

U

m3C UGU
C

m7G
GAG

G
U
m3C
��

A
Y

AAGm
U

Cm
A
G
A
C
C

m2G

m2G

CGAGAG
G

G
D

D G A C CU
A
U U U

A
G
G
C
G

A
C
C
A
C
G
C
U
U
A

A
G A C A C

C U
A
G
C

TG
U

m3C UGU
C

m7G
GAG

G
U
m3C

A
Y

AAGm
U

Cm
A
G
A
C
C

m2G

m2G

CGAGAG
G

G
D

D G A C CU
A
U U U

A
G
G
C
G

Fig. 2. A tRNA(tRNAPhe) secondary structure

these knowledge are also increased [13]. For the former demand, we have already
developed a pattern matching algorithm to deal with semi-structured data with-
out constructing any DOM trees [14]. For the latter demand, we have tackled
the pattern matching problem incorporating with taxonomic information [10].

In this paper, we study the pattern matching problem for arc-annotated se-
quences, which are strings with information about relationships between charac-
ters on the strings, which are represented by arcs (see Fig. 1). Such a string, for
example, can represent a text with phrase dependency in a Japanese sentence.
Pattern matching for those texts may enable us to find a pair of sentences similar
in meaning to each other, and to extract articles or essays which has a similar
outline from the web. This will be useful for knowledge federation.

The main motivation of this problem comes from computational biology, doing
pattern matching transfer RNA (tRNA) data (see Fig. 2) with considering their
structures [15]. That is, given a text and a pattern with arc information, the
problem is to answer whether the pattern can match a subsequence of the text
with preserving the arc shape. Gramm et al. [6] define this matching problem
as Arc-Preserving-Subsequence (APS for short) problem. The complexity of the
problem depends on the types of the arc annotations: Table 1 shows the summary
of the complexity for different versions of this problem [6]. Although it is proved
as NP-complete in a general case [5], they presented an algorithm which can
solve the problem in O(nm) time if both the text and the pattern contain no
crossing arcs and any two arcs do not share a character at the same position,

Faster Pattern Matching Algorithm for Arc-Annotated Sequences 27

Table 1. Summary of the complexity for different versions of the APS problem. The
row corresponds to the arc-annotation type of the text. The column corresponds to
arc-annotation type of the pattern. The class “unlimited” allows that some arcs share
the same endpoints. In this paper, however, we do not consider such case. This table is
based on Gramm et al. [6]. For APS(crossing, nested) and APS(crossing, chain), they
claimed that the complexities of them can be easily proved from [5], but the details
are omitted in [6].

APS(.,.) unlimited crossing nested chain plain

unlimited NP-complete [5]
crossing — NP-complete [5] NP-complete ?
nested — — O(nm) [6]

where n, m are the text length and the pattern length, respectively. However,
their algorithm has an error. Moreover, experimental results to estimate the
efficiency of the algorithm have not been given so far.

In this paper, we present the revised version of Gramm et al.’s algorithm
and propose more simple one. We also present our experimental results of the
running time of them.

Related works. To measure the similarity between two RNA sequences, several re-
searchers tackled the more general problem, which is to compute the longest arc-
preserving common subsequence (LAPCS). Evans [5] presented that the problem
is NP-complete in a general case, and also presented that there exist polynomial-
time algorithms in some special cases. Jiang et al. [9] answered an open prob-
lem mentioned in [5], and improve the hardness result in [5]. Alber et al. [1] stud-
ied LAPCS restricted to nested arcs, and presented efficient approximation algo-
rithms. Vialette [15] mentioned the complexity of LAPCS in detail. Ma, Wang,
and Zhang [11], and El-Mabrouk and Raffinot [4] studied the similarity of RNA
sequences based on the other models, considering with their secondary structures.
Although almost all works mentioned above are from the theoretical viewpoint,
only [4] showed the experimental results of their algorithm.

2 Preliminaries

Although we follow most definitions in [6], note that some are different from the
original one.

Let Σ be a finite alphabet. The length of a sequence (string) S ∈ Σ∗ is denoted
by |S|. A sequence whose length is 0 is denoted by ε, that is, |ε| = 0. The ith
character of S ∈ Σ∗ is denoted by S[i] for 1 ≤ i ≤ |S|, and S[i : j] denotes the
interval from S[i] to S[j] for 1 ≤ i ≤ j ≤ |S|. For convenience, let S[i : j] = ε for
i > j. For two sequence S and T (|S| ≤ |T |), if T becomes the same sequence as
S by eliminating |T | − |S| characters from T , S is called a subsequence of T .

An arc annotation A of a sequence S is a set of pairs of {1, 2, . . . , |S|}. An
element of A is called an arc. We assume below that it holds iL < iR for any
arc (iL, iR) ∈ A, and that any two arcs do not contain the same integer. An arc

28 T. Kida

(iL, iR) ∈ A of a sequence S represents that S[iL] is connected with S[iR] by the
arc. S[iL] and S[iR] are called left endpoint and right endpoint, respectively. Note
that any two arcs do not share the same endpoint from the above assumption.
We also denote by |A| the cardinality of a set A.

If a sequence S has no arcs, we call such arc structure plain. If any two arcs of
S are not nested or crossed, we call it chain. If any two arcs of S are not crossed
but may be nested, we call it nested. If some arcs of S are crossed, we call it
crossing. That is, for any two arcs (i1L, i1R), (i2L, i2R) ∈ A, it holds that i1R < i2L
or i2R < i1L if S is chain, and it holds that i2L < i1R < i2R ⇔ i2L < i1L < i2R if S
is nested.

Let S1 and S2 be two sequences with arcs A1 and A2, respectively. We say base
match if S1[i] = S2[j] for 1 ≤ i ≤ |S1| and 1 ≤ j ≤ |S2|. We also say arc match if
S1[i1L] = S2[i2L] and S1[i1R] = S2[i2R] for (i1L, i1R) ∈ A1 and (i2L, i2R) ∈ A2. If S2 is a
subsequence of S1, there exists a one-to-one mapping M from {1, 2, . . . , |S2|} to a
subset of {1, 2, . . . , |S1|}, given by M = {(j, ij) | 1 ≤ j ≤ |S2|, 1 ≤ ij ≤ |S1|}, and
it holds that S2[j] = S1[ij] for (j, ij) ∈ M . If S2 is mapped into a subsequence
of S1 by M and the subsequence preserves the shape of the arcs of S2, we call
S2 arc-preserving subsequence of S1. That is, for any (jL, iL), (jR, iR) ∈ M , it
holds that (jL, jR) ∈ A2 ⇔ (iL, iR) ∈ A1.

We define a set I
(k,�)
1 for a sequence S1 = S1[1 : n] and 1 ≤ k ≤ � ≤ n, as

I
(k,�)
1 = {i | k ≤ i ≤ �} −

⋃
(iL,iR)∈A1

∧k≤iL<iR≤�

{i′ | iL ≤ i′ ≤ iR},

and also define I
(k,�)
2 in the same manner. That is, I

(k,�)
1 is a set of character

positions except for those covered by arcs within S1[k : �]. We define a function
maxaps(S1[i1 : i2], S2[j1 : j2]) as to return the largest j′ for j1 ≤ j′ ≤ j2 such
that S2[j1 : j′] is an arc-preserving subsequence of S1[i1 : i2], or to return j1 − 1
if such j′ does not exist.

Arc-Preserving Subsequence problem. Given two sequences S1 = S1[1 : n] and
S2 = S2[1 : m] with arc-annotation A1 and A2, respectively, the Arc-Preserving
Subsequence (APS) problem is to answer if S2 is an arc-preserving subsequence of
S1. For convenience, we call the sequence S1 text and S2 pattern. The complexity
of the problem changes according to each arc structure of the text and the pat-
tern. Therefore, we denote the combination of them by APS(TYPE1, TYPE2),
where TYPE1 is the text structure and TYPE2 is the pattern structure. For
example, APS(nested, chain) indicates the arc-preserving subsequence problem
for a text with nested arc-annotation and a pattern with chain arc-annotation.

3 Algorithms

In this section we make brief sketches of the revised version of [6] and our
algorithm.

Faster Pattern Matching Algorithm for Arc-Annotated Sequences 29

3.1 GGN Algorithm

Gramm et al.[6] proposed an O(nm) algorithm which solves APS(nested, nested).
Their idea is to calculate maxaps for each subsequences inside the most inner
arcs of the text S1 and the pattern S2 at first, and then calculate maxaps for
subsequences outer the arc with dynamic programming. Finally, the value of
maxaps(S1[1 : n], S2[1 : m]) is computed. In [6], they introduced the algorithm
for APS(nested, chain) at first from the observation of APS(nested, plain) and
APS(chain, plain), and then extended it into the algorithm for APS(nested,
nested). Roughly estimating the complexity of their algorithm for APS(nested,
nested), it runs O(nm) time since S1[i] must be compared to S2[j] for any i, j
(1 ≤ i ≤ n, 1 ≤ j ≤ m). The space needed for storing the table for dynamic
programming is O(|A1|m).

Let S1[1 : n] be the text with arc-annotation A1 and S2[1 : m] be the pattern
with arc-annotation A2. Consider we now compute maxaps(S1[iL : iR], S2[jL :
jR]). If S1[iL : iR] and S2[jL : jR] have no arcs, namely in case of APS(plain,
plain), the values of maxaps for them can be easily computed in O(|S1[iL : iR]|)
time since we have only to check if the characters can match each other by sliding
pointers over S1[iL : iR] and S2[jL : jR].

Next we consider the case of APS(chain, plain) such as Fig. 3. We cannot

S1[1:12]:= A G T C A G A C C C G T

AGAC GACC

1 2 3 4 5 6 7 8 9 10 11 12

S2[1:5]:= A C C C TA C C C T

1 2 3 4 5

Fig. 3. Example of APS(chain, plain)

take both of two endpoints of the arc on S1 because of the definition of the
APS problem. Thus, we consider the part inside the arc as that two different
sequences are in parallel, and take the maximum of the values of maxaps for
them. For the running example,

maxaps(S1[5 : 9], S2[1 : 5]) = max
{

maxaps(S1[5 : 8], S2[1 : 5]),
maxaps(S1[6 : 9], S2[1 : 5])

}

= max{2, 3} = 3.

How to compute the value of maxaps in case of APS(nested, plain) can be
derived from the case of APS(chain, plain). Assuming that the values of maxaps
for each subsequence of any inner arcs and each suffix of the pattern are com-
puted, then we can compute it for the most outer arc in the same manner as

30 T. Kida

A G T C A G A C C C G T

1 2 3 4 5 6 7 8 9 10 11 12

A
C

C
C

T
A

C
C

C
T

1
2

3
4

5

3

3

4

4

4

5

5

5

5

5

1

2

S1:

S2:

1st2nd

Fig. 4. Example of APS(nested, plain). The figures under arcs indicate the order of
processing. The figures inside the dashed squares indicate maxaps(S1[iL : iR], S2[j, 5])
for each arc (iL, iR) ∈ A1 and 1 ≤ j ≤ 5. The values of maxaps for the inner arc are
firstly computed, and then those for the outer arc are computed.

APS(chain, plain). Namely, we avoid computing values of maxaps for the parts
inside the inner arcs twice by using dynamic programming technique. For the
example of Fig. 4, maxaps(S1[1 : 12], S2[1 : 5]) is computed as follows:

maxaps(S1[1 : 12], S2[1 : 5])

= max
{

maxaps(S1[1 : 11], S2[1 : 5]),
maxaps(S1[2 : 12], S2[1 : 5])

}

= max

⎧⎪⎪⎨
⎪⎪⎩

maxaps(S1[10 : 11], S2[maxaps(S1[5 : 9], S2[maxaps(S1[1 : 4],
S2[1 : 5]) + 1 : 5]) + 1 : 5]),

maxaps(S1[10 : 12], S2[maxaps(S1[5 : 9], S2[maxaps(S1[2 : 4],
S2[1 : 5]) + 1 : 5]) + 1 : 5])

⎫⎪⎪⎬
⎪⎪⎭

= max
{

maxaps(S1[10 : 11], S2[maxaps(S1[5 : 9], S2[3 : 5]) + 1 : 5]),
maxaps(S1[10 : 12], S2[maxaps(S1[5 : 9], S2[1 : 5]) + 1 : 5])

}

= max
{

maxaps(S1[10 : 11], S2[4 + 1 : 5]),
maxaps(S1[10 : 12], S2[3 + 1 : 5])

}

= max{4, 5} = 5.

In case of APS(nested, chain), computing the values of maxaps is rather
complicated. Although the approach is similar to the way of APS(nested, plain),
we must pay much attention to the order of the computation of maxaps in this
case. In the original algorithm of [6], the arcs are processed in increasing order
of their right endpoints. For example, in Fig. 5, maxaps(S1[iL : iR], S2[1 : 2]) for
any (iL, iR) ∈ A1 is computed at first, and then maxaps(S1[iL : iR], S2[3 : 4])
for any (iL, iR) ∈ A1 is computed. Finally, it for whole sequences is computed.
However, this algorithm may touch undefined entries of maxaps in this order.
Considering the computation of maxaps(S1[2 : 9], S2[1 : 2]), since the arc (1, 2) ∈
A2 can arc-match (3, 5) ∈ A1 and thus S1[3 : 5] is APS of S2[1 : 2], namely

Faster Pattern Matching Algorithm for Arc-Annotated Sequences 31

A G A C T C G C T C G T

A
T

G
C

C

2

2

2

3

5

0

1

4

4

5

4

4

4

4

5

0

1

2

3

5

5

5

5

5

5

2nd

S1:

S2:

1st

1 2 3

4 5

1

2

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5. Computation order of the original way in case of APS(nested, chain). The
figures under arcs indicate the order of processing. The values of maxaps inside the
upper dashed square are firstly computed, and then those inside the lower dashed
square are computed. However, computing each value indicated as a bold figure needs
for each value underlined with the waved-line which has not computed yet at the time.

A G A C T C G C T C G T

A
T

G
C

C

2

2

2

3

5

0

1

4

4

5

4

4

4

4

5

0

1

2

3

5

5

5

5

5

5

2nd

S1:

S2:

1st

3 2 1

4 5

2

1

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 6. Modified version of the computation order in case of APS(nested, chain). The
order of the processing must be in the reverse way of the original one. However, the
value underlined with the waved-line remains as a special case.

maxaps(S1[2 : 9], S2[1 : 2]) must be larger than 2. It must be equal to maxaps
for S2[3 : 5] and the rest part inside the arc (2, 9), namely S1[6 : 9]. In fact,
the original algorithm computes maxaps(S1[6 : 9], S2[3 : 5]) in the such case,
where the value of maxaps(S1[7 : 8], S2[3 : 4]) is required, while it has not
been computed yet. The similar case occurs when maxaps(S1[1 : 12], S2[3 : 4]) is
computed. To avoid this problem we must process the arcs in descending ordered
by left endpoints, and treat some undefined cases specially(Fig. 6).

The computation in case of APS(nested, nested) is derived as a natural ex-
tension of the case of APS(nested, chain) in a similar manner of the extension
from APS(chain, plain) to APS(nested, plain).

Fig. 7 and Fig. 8 show the revised version of Gramm et al.’s algorithm (GGN
algorithm).

32 T. Kida

function maxapsnp(S1[i1 : i2], S2[j1 : j2]) {
if (S1[i1 : i2] = ε or S2[j1 : j2] = ε) return j1 − 1;
else if (i1 = i2) {

if (S1[i1] = S2[j1]) return j1;
else return j1 − 1;

} else if (j1 = j2 and i1 < i2) {
if (S1[i1] = S2[j1]) return j1;
else return maxapsnp(S1[i1 + 1 : i2], S2[j1 : j1]);

} else if (i1 < i2 and j1 < j2) {
if (S1[i1] is a left endpoint of (iL, iR) ∈ A1) {

return maxapsnp(S1[iR + 1 : i2], S2[T (i1, j1) + 1 : j2]);
} else if (S1[i1] = S2[j1]) {

return maxapsnp(S1[i1 + 1 : i2], S2[j1 + 1 : j2]);
} else {

return maxapsnp(S1[i1 + 1 : i2], S2[j1 : j2]);
}

}
}
function maxapsnc(S1[i1 : i2], S2[j1 : j2]) {

if (S1[i1 : i2] = ε or S2[j1 : j2] = ε) return j1 − 1;
else if (i1 = i2) {

if (S1[i1] = S2[j1] and S2[j1] is not endpoint) return j1;
else return j1 − 1;

} else if (i1 < i2 and j1 = j2) {
if (S2[j1] is not endpoint) return j1 − 1;
else if (S1[i1] = S2[j1]) return j1;
else return maxapsnc(S1[i1 + 1 : i2], S2[j1 : j1]);

} else if (i1 < i2 and j1 < j2 and
S1[i1] and S2[j1] are not endpoints) {

if (S1[i1] = S2[j1]) return maxapsnc(S1[i1 + 1 : i2], S2[j1 + 1 : j2]);
else return maxapsnc(S1[i1 + 1 : i2], S2[j1 : j2]);

} else if (i1 < i2 and j1 < j2 and
S2[j1] is endpoint but S1[i1] is not endpoint) {

return maxapsnc(S1[i1 + 1 : i2], S2[j1 : j2]);
} else if (i1 < i2 and j1 < j2 and

S1[i1] is a left endpoint of (iL, iR) ∈ A1) {
if (T (i1, j1) is not defined) {

T (i1, j1) = max(maxapsnc(S1[i1 : iR − 1], S2[j1 : j2]),
maxapsnc(S1[i1 + 1 : iR], S2[j1 : j2]));

}
return maxapsnc(S1[iR + 1 : i2], S2[T (i1, j1) + 1 : j2]);

}
}

Fig. 7. Functions for GGN algorithm

Faster Pattern Matching Algorithm for Arc-Annotated Sequences 33

procedure GGNalgorithm(S1, A1, S2, A2) {
for each (jL, jR) ∈ A2 (descending ordered by their left endpoints) {

for each j ∈ I
(jL+1,jR−1)
2 {

for each (iL, iR) ∈ A1 (descending ordered by their left endpoints) {
if ((jL, jR) ∈ A2 is the most inner arc) {

T (iL, j) = max(maxapsnp(S1[iL : iR − 1], S2[j : jR − 1]),
maxapsnp(S1[iL + 1 : iR], S2[j : jR − 1]));

} else {
T (iL, j) = max(maxapsnc(S1[iL : iR − 1], S2[j : jR − 1]),

maxapsnc(S1[iL + 1 : iR], S2[j : jR − 1]));
}

}
}
for each (iL, iR) ∈ A1 (descending ordered by their left endpoints) {

if ((iL, iR) ∈ A1 is the most inner arc
such that maxapsnc(S1[iL : iR], S2[jL : jR]) = jR) {

T (iL, jL) = jR;
} else {

T (iL, jL) = maxapsnc(S1[iL + 1 : iR], S2[jL : m]);
}

}
}
for each j ∈ I

(1,m)
2 (in descending order) {

for each (iL, iR) ∈ A1 (descending ordered by their left endpoints) {
T (iL, j) = max(maxapsnc(S1[iL + 1 : iR], S2[j : m]),

maxapsnc(S1[iL : iR − 1], S2[j : m]));
}

}
if (maxapsnc(S1[1 : n], S2[1 : m]) = m) {

print ‘S2 is an aps of S1’;
} else {

print ‘S2 is an aps of S1’;
}

}

Fig. 8. GGN algorithm for APS(nested, nested)

3.2 Proposed Algorithm

GGN algorithm uses a kind of bottom-up dynamic programming. It must calcu-
late for any combination of i and j (1 ≤ i ≤ n, 1 ≤ j ≤ m). However, in practice,
the great part of calculations tends to be useless when we need to know only if
maxaps(S1[1 : n], S2[1 : m]) = m or not. We can omit the useless calculations
by using a kind of top-down dynamic programming any by storing values which
are actually needed. We can also reduce the calculations by using the property
that arc matches are followed by base matches. Moreover, while GGN algorithm

34 T. Kida

utilizes maxapsnp for APS(nested, plain) and maxapsnc for APS(nested, chain),
note that it can be combined into one because maxapsnc contains maxapsnp
essentially.

Let S1[1 : n] be the text with arc-annotation A1 and S2[1 : m] be the pattern
with arc-annotation A2. Now assume that S1[1 : i − 1] is an APS of S2[1 : j − 1]
for some 1 ≤ i < n and 1 ≤ j < m, namely maxaps(S1[1 : i − 1], S2[1 : m])
= j − 1. Then S1[1 : n] is an APS of S2[1 : m] if maxaps(S1[i : n], S2[j : m]) =
m. Our proposed algorithm computes maxaps by left-to-right manner basically
as follows.

We check if S1[i] base-matches with S2[j] at first. If S1[i] does not match
with S2[j], then we increase i by 1 and continue the base-match check. If S1[i]
matches with S2[j], then two cases are considered. One is the case that S2[j] is
not an endpoint, and another is that S2[j] is an endpoint of an arc (jL, jR) ∈ A2.
In the former case, S1[i] is an APS of S2[j] if S1[i] is not an endpoint, thus we
increase i and j by 1 and continue the base-match check. Otherwise, we must
compute maxaps(S1[i : iR], S2[j : m]) for (i, iR) ∈ A1 recursively. In the latter
case, we check if S1[i] arc-matches with S2[j]. If maxaps(S1[i : iR], S2[j : m]) has
already computed for (i, iR) ∈ A1, we proceed the pointers as i = iR + 1 and
j = maxaps(S1[i : iR], S2[j : m])+1. Otherwise, next we check if maxaps(S1[i+1 :
iR − 1], S2[j + 1 : jR − 1]) for (i, iR) ∈ A1 and (j, jR) ∈ A2 is equals to jR − 1 or
not. If it is equal to or larger than jR, there may be another arc inside (i, iR) that
arc-matches with (j, jR), and then we must compute maxaps(S1[i : iR], S2[j : m])
recursively.

During above processing, if the pointer j reaches to m before the pointer i
becomes larger than n, we can say maxaps(S1[1 : n], S2[1 : m]) = m, namely
S1[1 : n] is an APS of S2[1 : m]. For example, the process of the algorithm is as
Fig. 9.

From the above observation, we can obtain a more simple algorithm showed
in Fig. 10.

A G T C A C G C C C G TA G T C A C G C C C G TS1:=

A A G C TA A G C TS2:=

Text:

Pattern:

1 2

3 4 5 6 7
8 9

Fig. 9. Computation of the proposed algorithm. Solid lines between S1 and S2 indi-
cate matches, and dashed lines indicate mismatches. The figures followed by the lines
indicates the order of the comparisons. Crosses over the arcs indicate that they could
not arc-match.

Faster Pattern Matching Algorithm for Arc-Annotated Sequences 35

function maxaps(S1[i1 : i2], S2[j1 : j2]) {
if (S1[i1 : i2] = ε or S2[j1 : j2] = ε) {

return j1 − 1;
}
for (i = i1, j = j1; i ≤ i2 and j ≤ j2; i + +) {

if (S1[i] �= S2[j]) {
continue;

}
if (S2[j] is not endpoint) {

if (S1[i] is not a left endpoint of (iL, iR) ∈ A1) {
j + +;

} else {
if (T (i, j) is not defined) {

T (i, j) = max(maxaps(S1[i : iR − 1], S2[j : j2]),
maxaps(S1[i + 1 : iR], S2[j : j2]));

}
j = T (i, j) + 1;
i = iR;

}
} else {

if (S2[j] is a left endpoint of (jL, jR) ∈ A2) {
if (S1[i] is a left endpoint of (iL, iR) ∈ A1 and S1[iR] = S2[jR]) {

if (T (i, j) is not defined) {
t1 = maxaps(S1[i + 1 : iR − 1], S2[j + 1 : jR − 1]);
t2 = maxaps(S1[i + 1 : iR], S2[j : j2]);
if (t1 = jR − 1 and t1 > t2) {

T (i, j) = t1 + 1;
} else {

T (i, j) = t2;
}

}
j = T (i, j) + 1;
i = iR;

}
}

}
}
return j − 1;

}
procedure FGGNalgorithm(S1, A1, S2, A2) {

if (maxaps(S1[1 : n], S2[1 : m]) = m) {
print ‘S2 is an aps of S1’;

} else {
print ‘S2 is an aps of S1’;

}
}

Fig. 10. Faster GGN(FGGN) algorithm

36 T. Kida

4 Experimental Results

We implemented two algorithms mentioned above in C, and tested them for
some data which generated randomly on Σ = {A, C, G, U}. We used DELL Pre-
cision650 (Intel Xeon 3.06GHz dual-CPU and 3.5GB memory) running Cygwin
on Windows XP, and used Gcc version 3.3.1. For each experiment, we prepared
1000 sequences as texts which are generated in the same condition, and carried
out on them for 5 different patterns. We measured the total CPU time for the
patterns and calculated the average.

Fig. 11 shows the result where we changed text lengths n = |S1| from 100 to
1000 and we set |A1| equal to 20% of n, for patterns whose length m = |S2| = 20
and |A2| = 4. Fig. 12 shows the result where we changed pattern lengths m = |S2|
from 10 to 100 and we set |A2| equal to 20% of m, for texts whose length
n = |S1| = 1000 and |A1| = 100. Fig. 13 shows the result where we changed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 200 300 400 500 600 700 800 900 1000

n

C
P
U

t
i
m
e

(
s
)

GGN

FGGN

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 200 300 400 500 600 700 800 900 1000

n

C
P
U

t
i
m
e

(
s
)

Fig. 11. Changes in running time with n

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100

m

C
P
U

GGN

FGGN

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100

m

C
P
U

t
i
m
e

(
s
)

Fig. 12. Changes in running time with m

Faster Pattern Matching Algorithm for Arc-Annotated Sequences 37

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

|A2|

C
P
U

GGN

FGGN

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

|A2|

C
P
U

t
i
m
e

(
s
)

Fig. 13. Changes in running time with |A2|

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

C
P
U

GGN

FGGN

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

C
P
U

t
i
m
e

(
s
)

Maximum depth of nests

Fig. 14. Changes in running time with the max-depth of nests

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

100 200 300 400 500 600 700 800 900 1000
n

A
ve

ra
ge

 n
um

be
r o

f c
om

pa
ris

on
s

GGN

FGGN
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

100 200 300 400 500 600 700 800 900 1000
n

GGN

FGGN

Fig. 15. Changes in the average number of comparisons with n

38 T. Kida

|A2| of patterns from 0 to 20 and we set m = |S2| = 50, for texts whose length
n = |S1| = 1000 and |A1| = 100. Fig. 14 shows the result where we changed the
maximum depth of nests of patterns from 1 to 10 and we set m = |S2| = 50 and
|A2| = 20, for texts whose length n = |S1| = 1000 and |A1| = 100.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

10 20 30 40 50 60 70 80 90 100
m

A
ve

ra
ge

 n
um

be
r o

f c
om

pa
ris

on
s

GGN

FGGN
0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

10 20 30 40 50 60 70 80 90 100
m

GGN

FGGN

Fig. 16. Changes in the average number of comparisons with m

In addition to the above, we also measured the average number of compar-
isons between characters of S1 and S2 in order to remove the influence on the
environment of implementation and so on. Fig. 15 shows the result where the
conditions are the same as Fig. 11. Fig. 16 shows the result where the conditions
are the same as Fig. 12. We can see that the results tend to be similar to those
for running time.

5 Conclusion

From the experimental results, our algorithm runs 2 ∼ 5 times faster than
the revised version of GGN algorithm. Moreover, note that the running time
of our algorithm is little affected by the length, the number of arcs, and the
depth of nests of a given pattern, which is especially desirable in practical
uses.

It is not obvious whether APS(crossing, plain) is NP-complete or not. A
polynomial time algorithm for the problem is expected. Since n, m tend to be
rather small in real data, there may exist an algorithm that solves in reasonable
time even if APS(crossing, crossing). Such a practically efficient algorithm will
be useful for real applications. To carry out an experiment for real data is our
future work.

Pattern matching with arc-annotation where each arc has attributes is also a
challenging problem.

Faster Pattern Matching Algorithm for Arc-Annotated Sequences 39

References

1. J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the similarity of
two sequences with nested arc annotations. Theoretical Computer Science, 312(2-
3):337–358, January 2004.

2. G. O. Consortium. Gene ontology: Tool for the unification of biology. Nature
Genetics, 25:25–29, 2000. http://www.geneontology.org/.

3. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Publishing,
2002.

4. N. El-Mabrouk and M. Raffinot. Approximate matching of secondary structures.
In Proc. RECOMB, pages 156–164. ACM Press, 2002.

5. P. A. Evans. Finding common subsequences with arcs and pseudoknots. In Proc.
10th CPM, volume 1645 of LNCS, pages 270–280. Springer, 1999.

6. J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated se-
quences. In Proc. 22nd FSTTCS, volume 2556 of LNCS, pages 182–193. Springer,
2002.

7. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

8. L. Japan Electronic Dictionary Research Institute. Edr electronic dic-
tionary technical guide (2nd edition). Technical Report TR-045, 1995.
http://www.iijnet.or.jp/edr.

9. T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence
problem for arc-annotated sequences. Journal of Discrete Algorithms, 2(2):257–
270, June 2004.

10. T. Kida and H. Arimura. Pattern matching with taxonomic information. In Proc.
Asia Information Retrieval Symposium, pages 265–268, October 2004.

11. B. Ma, L. Wang, and K. Zhang. Computing similarity between rna structures.
Theoretical Computer Science, (276):111–132, 2002.

12. G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings: Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press,
2002.

13. R. Stevens, I. Horrocks, C. Goble, and S. Bechhofer. Building a reson-able bioinfor-
matics ontology. IEEE Transactions on Information Technology and Biomedicine,
6(2):136–41, 2002.

14. M. Takeda, S. Miyamoto, T. Kida, A. Shinohara, S. Fukamachi, T. Shinohara, and
S. Arikawa. Processing text files as is: Pattern matching over compressed texts,
multi-byte character texts, and semi-structured texts. In Proc. 9th International
Symposium on String Processing and Information Retrieval, volume 2476 of LNCS,
pages 170–186. Springer, September 2002.

15. S. Vialette. On the computational complexity of 2-interval pattern matching prob-
lems. Theoretical Computer Science, 312(2-3):223–249, January 2004.

VSOP (Valued-Sum-of-Products) Calculator
for Knowledge Processing

Based on Zero-Suppressed BDDs

Shin-ichi Minato

Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, 060-0814 Japan

Abstract. Recently, Binary Decision Diagrams (BDDs) are widely used
for efficiently manipulating large-scale Boolean function data. BDDs are
also applied for handling combinatorial item set data. Zero-suppressed
BDDs (ZBDDs) are special type of BDDs which are suitable for im-
plicitly handling large-scale combinatorial item set data. In this paper,
we present VSOP program developed for calculating combinatorial item
set data specified by symbolic expressions based on ZBDD techniques.
Our program supports not only combinatorial set operations but also
numerical arithmetic operations based on Valued-Sum-Of-Products al-
gebra, such as addition, subtraction, multiplication, division, numerical
comparison, etc. We discuss the data structures and algorithms in our
program, and show some typical applications. VSOP calculator will be
useful for solving many problems in Computer Science. We show one of
the promising application to find a hidden data group related each other
under the huge amount of web space. Our method will facilitates knowl-
edge federation over the web, and also useful for many other applications
in computer science.

1 Introduction

Manipulation of Boolean functions is a fundamental techniques for handling
various problems in computer science. Binary Decision Diagrams(BDDs)[4] are
efficient graph-based representation of Boolean functions, intensively studied in
1990’s, and now widely used in digital system design and many other areas. Zero-
suppressed BDDs (ZBDD)[10, 15] are a special type of BDDs for efficient manip-
ulation of combinatorial item set data. ZBDD-based method have been applied
for many algorithmic problems such as minimizing sum-of-products forms[14],
database analysis[16], and many kinds of graph optimization problems[6].

In this paper, we present VSOP calculator developed for calculating combinato-
rial item sets specified by symbolic expressions.Based on ZBDDtechniques, VSOP
can efficiently handle large-scale sum-of-products expressions with a number of
item symbols. Our program supports not only Boolean set operations but also nu-
merical arithmetic operations based on Valued-Sum-Of-Products algebra, such as
addition, subtraction, multiplication, division, numerical comparison, etc.

The author has a past result of developing an arithmetic Boolean expres-
sion manipulator ”BEM-II”[9] based on (ordinary) BDDs, and the program was

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 40–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

VSOP Calculator for Knowledge Processing Based on ZBDDs 41

utilized for many works[17, 18, 8]. VSOP deal with the arithmetic and numer-
ical operations as well as BEM-II, and extends the data model from Boolean
functions to combinatorial sets. The interface of VSOP is very flexible and cus-
tomizable for solving many kinds of combinatorial problems, and it will facilitate
research and development for knowledge processing.

As one of the promising applications, this paper shows that our VSOP cal-
culator facilitates “knowledge federation over the web”. Usually, the knowledge
on the web consists of a number of distributed data, and one important task is
to find a hidden data group strongly related each other over a huge amount of
web space. We will show the experimental results to extract combinations of web
pages which are frequently appearing together in a session of web transactions.

The paper is organized as follows: First, we briefly review BDDs and ZBDDs
in Section 2. We then describe the representation method of Valued-Sum-Of-
Products forms based on ZBDDs in Section 3. We present algorithms of arith-
metic operations in Section 4, and several display formats of VSOP are shown in
Section 5. Finally we show some typical applications of VSOP calculator followed
by concluding remarks.

2 BDDs and ZBDDs

BDD is a directed graph representation of the Boolean function, as illustrated
in Fig. 1(a). It is derived by reducing a binary tree graph representing recursive
Shannon’s expansion, indicated in Fig. 1(b). The following reduction rules yield
a Reduced Ordered BDD (ROBDD), which can efficiently represent the Boolean
function. (see [4] for details.)

– Delete all redundant nodes whose two edges point to the same node. (Fig. 2(a))
– Share all equivalent sub-graphs. (Fig. 2(b))

ROBDDs provide canonical forms for Boolean functions when the variable
order is fixed. Most research on BDDs are based on the above reduction rules.

0

c

b

a

c cc

b

1 001 1 1 1

10 0 0 0

0 0

0

1 1 1

1 1

1

F

c

b

a

0 1

0

0

0

1

1

1

F

(a) BDD (b) Binary Decision Tree

Fig. 1. Reduced and non-reduced BDDs for F = (a ∧ b) ∨ c

42 S. Minato

0
x

1

f

jump

f f1f0

xx
00 11

f1f0

x
0 1

share

(a) Node deletion (b) Node sharing

Fig. 2. Conventional BDD reduction rules

b

a

0 1

00

0

11

1

b

aa
0 01

1

F1 F2 F3 F4

F1 = a ∧ b
F2 = a ⊕ b
F3 = b
F4 = a ∨ b

Fig. 3. Shared BDD

0

0

x
1

Jump

f f

Fig. 4. ZBDD reduc-
tion rule

In the following sections, ROBDDs will be referred to as BDDs (or ordinary
BDDs) for the sake of simplification.

As shown in Fig. 3, a set of multiple BDDs can be shared each other under
the same fixed variable ordering. In this way, we can handle a number of Boolean
functions simultaneously in a monolithic memory space.

Using BDDs, we can uniquely and compactly represent many practical Boolean
functions including AND, OR, parity, and arithmetic adder functions. Using
Bryant’s algorithm[4], we can efficiently construct a BDD for the result of a binary
logic operation (i.e. AND, OR, XOR), for given a pair of operand BDDs. This algo-
rithm is based on hash table techniques, and the computation time is almost linear
to the data size unless the data overflows the main memory. (see [13] for details.)

BDDs are originally developed for handling Boolean function data, however,
they can also be used for implicit representation of combinatorial sets. Here we
call “combinatorial item set” for a set of elements each of which is a combina-
tion out of n items. This data model often appears in real-life problems, such
as combinations of switching devices, Boolean item sets in the database, and
combinatorial sets of edges or nodes in the graph data model.

A combinatorial item set can be mapped into Boolean space of n input vari-
ables. If we choose any one combination of items, a Boolean function determines
whether the combination is included in the combinatorial item set. Such Boolean
functions are called characteristic functions. The set operations such as union,
intersection, and difference can be performed by logic operations on character-
istic functions.

VSOP Calculator for Knowledge Processing Based on ZBDDs 43

By using BDDs for characteristic functions, we can manipulate combina-
torial item set efficiently. They can be generated and manipulated within a
time roughly proportional to the BDD size. When we handle many combina-
tions including similar patterns (sub-combinations), BDDs are greatly reduced
by node sharing effect, and sometimes an exponential reduction benefit can be
obtained.

Zero-suppressed BDD (ZBDD)[10, 15] is a special type of BDDs for effi-
cient manipulation of combinatorial item set. ZBDDs are based on the following
special reduction rules.

– Delete all nodes whose 1-edge directly points to the 0-terminal node, and
jump through to the 0-edge’s destination, as shown in Fig. 4.

– Share equivalent nodes as well as ordinary BDDs.

Notice that we do not delete the nodes whose two edges point to the same
node, which used to be deleted by the original rule. The zero-suppressed deletion
rule is asymmetric for the two edges, as we do not delete the nodes whose 0-edge
points to a terminal node. It is proved that ZBDDs are also gives canonical forms
as well as ordinary BDDs under a fixed variable ordering.

Here we summarise the features of ZBDDs.

– In ZBDDs, the nodes of irrelevant items (never chosen in any combination)
are automatically deleted by ZBDD reduction rule. In ordinary BDDs, irrel-
evant nodes still remain and they may spoil the reduction benefit of sharing
nodes. (An example is shown in Fig. 5.)

– ZBDDs are especially effective for representing sparse combinations. For in-
stance, sets of combinations selecting 10 out of 1000 items can be represented
by ZBDDs up to 100 times more compact than ordinary BDDs.

– Each path from the root node to the 1-terminal node corresponds to each
combination in the set. Namely, the number of such paths in the ZBDD

S(abc):
abc S
000 0
100 1
010 1
110 0
001 0
101 0
011 0
111 0

S(abcd):
abcd S
0000 0
1000 1
0100 1
1100 0
0010 0
1010 0
0110 0
1110 0
0001 0
1001 0
0101 0
1101 0
0011 0
1011 0
0111 0
1111 0

0 1

a a

b

c

d

11

1

1

0

0

0

0
b bb

c
1

1

1
1

1

0

00

00

S(abcd)
S(abc)

S(abc)
S(abcd)

0 1

a

b
1

1

0

0

BDD ZBDD

Fig. 5. Effect of ZBDDs

44 S. Minato

Fig. 6. ZBDD for (a + b +
c)(d + e + f)(g + h + i)

Fig. 7. Explicit represen-
tation with ZBDD

equals to the number of combinations in the set. In ordinary BDDs, this
property does not always hold.

– When no equivalent nodes exist in a ZBDD, that is the worst case, the ZBDD
structure explicitly stores all items in all combinations, as well as using an
explicit linear linked list data structure. Namely, (the order of) ZBDD size
never exceeds the explicit representation. An example is shown in Fig. 7. If
more nodes are shared, the ZBDD is more compact than linear list. Ordinary
BDDs have larger overhead to represent sparser combinations while ZBDDs
have no such overhead.

Figure 8 shows the most of primitive operations of ZBDDs. In these oper-
ations, ∅, 1, P.top are executed in a constant time, and the others are almost
linear to the size of graph. We can describe various processing on combinatorial
item sets by composing of these primitive operations.

“∅” Returns empty set. (0-termial node)
“1” Returns the set of only null-combination.

(1-terminal node)
P .top Returns the item-ID at the root node of P .
P .offset(v) Selects the subset of combinations

each of which does not include item v.
P .onset(v) Selects the subset of combinations includ-

ing item v, and then delete v from each
combination.

P .change(v) Inverts existence of v (add / delete)
on each combination.

P ∪ Q Returns union set.
P ∩ Q Returns intersection set.
P − Q Returns difference set. (in P but not in Q.)
P .count Counts number of combinations.

Fig. 8. Primitive ZBDD operations

VSOP Calculator for Knowledge Processing Based on ZBDDs 45

3 VSOP Expressions Using ZBDDs

In this paper, we call VSOP (Valued-Sum-Of-Products) for a combinatorial item
set (or a sum-of-products form) such that each product term has a value. This
value can also be considered as a coefficient or a weight for each term. So far,
we deal with only integer values. We define the value as zero for a product term
not included in the VSOP.

For example, the formula (5abc + 3ab + 2bc + c) represents a VSOP with four
terms abc, ab, bc, and c, each of which is valued as 5, 3, 2, and 1, respectively. This
meas that a pattern abc appears five times in a same database. Another meaning
is that five times cost is needed to obtain a pattern abc in a certain process.

Not only enumerating combinations but also assigning such values (coefficients
or weights) for each product term, we can represent a simple but fundamental
knowledge data, which can be used for various problems in computer science.
That is a motivation for us to develop a program to efficiently calculate VSOP
expressions based on ZBDD techniques.

In the VSOP algebra, the addition follows the ordinary rule: 1 + 1 = 2 and
x+x = 2x. However, multiplication rule is not conventional: 2×2 = 4, x×y = xy,
but x × x = x, because we only handle combinatorial item sets, not considering
higher degree of item symbols. Notice that the same algebra is also used in
calculating expressions of probabilistic variables.

Here we discuss the way to compactly represent VSOP data by using ZBDDs.
Since ZBDDs are representation of combinatorial item sets, a simple ZBDD
distinguishes only existence of each product term in the set. Thus we need
some extended data structure to represent numerical numbers using ZBDDs.
Two methods are known on this issue, the one is using BMDs (Binary Moment
Diagrams)[5] handling not only 0- and 1-terminal nodes but also numerical val-
ued terminal nodes. The other method is using vector of ordinary ZBDDs to
represent binary coding of numerical values[12]. In our program, we use the lat-
ter method. We decompose the integer number into m-digits of ZBDD vector
{F0, F1, . . . , Fm−1} to represent integers up to (2m − 1), as shown in Fig. 9.
Namely, F0 represents a set of terms whose values are odd numbers, F1 repre-
sents a set of terms whose values have ‘1’ at the second digit of binary coding,
and listing such ZBDDs until Fm−1, we can implicitly represent a VSOP data.

Fig. 9. ZBDD vector for (5abc + 3ab + 2bc + c)

46 S. Minato

When dealing with integer values in binary coding, we have to consider the
expression of negative numbers. There are two well-known methods, one of which
is using 2’s complement representation, and the other is using the absolute value
with sign; however, both method have drawbacks. When using 2’s complement,
it yields many non-zero digits for small negative numbers (typically, −1 is “all
one”), and the ZBDD reduction rule is not effective to those non-zero bits. On
the other hand, when using absolute value, the operation of addition become
complicated since we have to classify the product terms to choose addition or
subtraction depending on magnitude of values.

To solve the above problems, we adopted another binary coding[12] based on
(−2), namely, each bit represents 1, −2, 4, −8, 16, For example, −12 can be
decomposed into (−2)5 + (−2)4 + (−2)2 = −2 · 24 + 24 + 22. In this encoding
we can also uniquely represent the integer numbers. Using binary coding with
(−2), the higher digits become zero both for positive and negative numbers, and
the ZBDD reduction rule works effectively to eliminate the meaningless nodes
of higher digits.

In our implementation, we define the special item symbols to combine the
ZBDD vector into a single ZBDD. By using 20 special item symbols with higher
variable order (near to the root node), up to 220 (about one million) digits of
ZBDD vector can be combined into one ZBDD. This means that practically
unlimited long digital numbers are representable in our program.

4 Algorithms for Arithmetic Operations

VSOP expressions are manipulated by arithmetic operations, such as addition,
subtraction, multiplication, and division. We first generate ZBDDs for trivial
VSOP expressions which are single item symbols or integer constants, and then
apply those arithmetic operations to construct more complicated VSOP expres-
sions. In this section, we present efficient algorithms for the arithmetic operations
of VSOPs based on ZBDDs.

(Multiplication by an item). Multiplication of a VSOP F and an item sym-
bol v can be done by simply attach v to all product terms in F . This is
easily written by the basic operations Onset, Offset, and Change of ZBDDs.
Computation time is linear to the number of nodes which are ordered lower
than v in the ZBDD.

(Multiplication by a constants). Multiplication of F by an integer constant
c means that each value of term is multiplied c times. If c is exactly expo-
nential number of (−2), this operation is just shifting each digits of ZBDD
vectors, so computation time is linear to the number of digits, not depend-
ing on the number of ZBDD nodes. For general integer c, we decompose c
into a bit-vector c0, c1, . . . , cm and compute F × (−2)ici for each i. After
that we calculate total of them by using addition operation, described as
follows.

VSOP Calculator for Knowledge Processing Based on ZBDDs 47

procedure (F + G)
{ C ← (F ∩ G) ;

S ← (F ∪ G) − C ;
if (C = 0) return S ;
else return S − (−2 · C);

}

procedure (F − G)
{ B ← (F ∩ G) ;

D ← (F ∩ G) ;
if (B = 0) return D ;
else return D + (−2 · B);

}

Fig. 10. Algorithm for addition and subtraction

(Addition and Subtraction). Addition of the two VSOPs F + G is defined
as generating a new VSOP expression such that each value of product term
is sum of values of the same item combinations in F and G. For example,
When F = ab+2bc−3c and G = 3ac−2bc+c, then (F +G) = ab+3ac−2c.

Figure 10 shows the algorithms for addition and subtraction based on
ZBDD operations. If (F ∩ G) is empty, that means there are no common
combinations at any digit, in such case we do not need any carry up, so the
addition (F + G) can be completed by just merging them (F ∪ G). On the
other hand, if (F ∩ G) contains some common combinations, it represents
the set of carries of respective digits. We then make twice of the set of carries
and call addition operation again to sum up the carries. By repeating this
process, common combinations are eventually exhausted and the procedure
is completed.

Since we use the binary coding based on (−2), the one-bit shift cor-
responds to not twice, but (−2) times, so the carry up formula becomes
S − (−2 · C). Namely, we call a subtraction from the addition procedure.
Similarly, a borrow of subtraction calls an addition operation. We can im-
plement the both operations with a dual structure.

(Multiplication of two VSOPs). Here we define the multiplication (or prod-
uct) of two VSOPs (F × G) as generating all possible concatenations of two
product terms in respective F and G.

Using the multiplication by items or constants, we can compose the mul-
tiplication algorithm for the general VSOPs, as shown in Fig. 11. This al-
gorithm is based on the divide-and-conquer idea. Suppose v is the highest-
ordered item, F and G are then factored into two parts: F = v·F1∪F0, G =
v · G1 ∪ G0.

Under this factorization, the product (F × G) can be written as:
((F1 × G1) + (F1 × G0) + (F0 × G1)) × v + (F0 × G0).

Each sub-product term can be computed recursively. The expressions are
eventually broken down into trivial ones and the result is obtained. In the
worst case, this algorithm would require exponential number of recursive
calls for the number of items; however, we can accelerate them by using a
hash-based cache memory which stores the results of recent operations. By
referring to the cache before each recursive call, we can avoid duplicate execu-
tions for equivalent sub-formulas. Consequently, the execution time depends
on ZBDD size, not on the number of terms.

48 S. Minato

procedure(F × G)
{ if (F.top < G.top) return (G × F) ;

if (G = 0) return 0 ;
if (G = 1) return F ;
H ← cache(“F × G”) ;
if (H exists) return H ;
v ← F.top ; /* the highest item in F */
(F0, F1) ← factors of F by v ;
(G0, G1) ← factors of G by v ;
H ← ((F1 × G1) + (F1 × G0) + (F0 × G1)) × v

+(F0 × G0) ;
cache(“F × G”) ← H ;
return H ;

}

Fig. 11. Algorithm for multiplication

(Division by an item). Division of a VSOP by an item, the quotient (F/v)
and the remainder (F%v) are defined as classification of the product terms
into the two subset, including or excluding v in the item combinations. These
operations are exactly same as Onset and Offset operations of ZBDDs.

(Division by a constant). Division of a VSOP by a constant, (F/c) and
(F%c), are simply defined as integer division (quotient and reminder) for
each value of product terms in F . For example, computing (F/30) can delete
all product terms whose values are less than 30. Oppositely, (F%30) extracts
such product terms valued less than 30. We can implement this numerical
operation by using arithmetic shift and addition/subtraction operations.

(Division of VSOPs). In the VSOP algebra, we have the non-linear multipli-
cation rule v×v = v, and this rule leads that the result of arithmetic division
(F/G) is not decided uniquely in general. Thus, we must define our division
rule to make a unique result.

In the model of ”Boolean” sum-of-products expressions without integer
values, Weak-division method[3] has been known for long time and widely
used in VLSI logic optimization problems. This division method is based on
the following rule:

If the divisor G consists of multiple product terms Ti, the quotient Q(= F/G)
is defined as the sum of product terms included in every Qi = F/Ti for all i.
Now we propose here the new division method, named Valued weak division,
which is natural extension of (boolean) weak division. This new method is the
same as conventional one until calculating Qi. After that, we do not extract
common product terms, but calculating values absolutely minimum in all Qi.
For example, assume that F = 2ab+4ac+ad−2bc+3bd and G = a+b, then

Q1 = (F/a) = 2b + 4c + d,
Q2 = (F/b) = 2a − 2c + 3d

and we obtain Q = −2c + d.

VSOP Calculator for Knowledge Processing Based on ZBDDs 49

procedure(F/G)
{ if (G =constant:c) return (F/c) ;

if (F =constant:c) return 0 ;
Q ← cache(“F/G”) ; if (Q exists) return Q ;
v ← G.top ; /* the highest variable in G */
(F0, F1) ← factors of F by v ;
(G0, G1) ← factors of G by v ;
Q ← F1/G1 ;
if (G0 �= 0 and Q �= 0)

Q0 ← F0/G0 ;
Q ← (choose value from Q or Q0

absolutely smaller one) ;
cache(“F/G”) ← Q ;
return Q ;

}

Fig. 12. Algorithm for division

If the given F and G have only boolean values in every terms, our division
method gives completely same results as conventional weak division, so it is
a natural extension of conventional method.

Figure 12 shows the algorithm of this division methods using ZBDDs. This
is an extension of ZBDD-based fast weak division method[11] to the VSOP
model. As well as the multiplication algorithm, we can accelerate the execu-
tion by using a hash-based cache memory to avoid duplicate executions for
equivalent sub-formulas, and the computation time depends on ZBDD size,
not on the number of terms.

The remainder of division (F%G) can be obtained by computing F −
(F/G) × G.

(Comparison). VSOP program supports the operators (== != > >= < <=) to
compare the numerical values of the two VSOPs. Each of those operators
extracts all the product terms included at least in the left or the right ex-
pressions and satisfying the arithmetic relation of the operator. For example,
suppose F = 3ab + 2bc − c and G = 2ab − 2b + 3c, and then we can get
(F > G) = ab+ bc+ b. On the same case, (F != 0) becomes ab+ bc+ c, and
this is regarded as the regularization of all non-zero values to 1 (Boolean).
Those comparison operations can be executed in almost same computation
time as addition/subtraction operations.

(Other operations). We also implemented the If-Then-Else operator
(F ? G : H), which extracts the product terms from G such that the item
combinations included in F , and also extracts the terms from H for the item
combinations not included in F . Using this operations with arithmetic com-
parisons, we can specify various nonlinear functions. For instance, (F > G)?
F : G generates a VSOP choosing the terms with larger values between F
and G.

In addition, we implemented Restrict and Permit operations proposed
in [19], which are basically same as SupSet and Subset operations in [6].
F .Restrict(G) extracts the product terms from F such that the item com-

50 S. Minato

bination is a superset of at least one item combination in G. On the other
hand, F .Permit(G) extracts the product terms from F such that the item
combination is a subset of at least one item combination in G. The compu-
tation time is almost linear to ZBDD size. These two operations are useful
for solving constraint satisfaction problems[19] by describing restrictive or
permissive conditions with VSOP expressions.

5 Display Formats for Computation Results

VSOP program provides several helpful display formats to show the calculation
results to the user. We explain typical formats as follows.

(Sum-of-products form with coefficients). The most basic method is to
enumerate all product terms with their values. For example, the formula
3abc + 2bc − c shows all product terms with coefficients. The order of prod-
uct terms is a lexicographical manner of item combinations. This format
is easy to see if the number of terms is not so many. In our program, one
VSOP data may have millions of terms, and in such cases, we cannot finish
the output in a practical time.

(Integer Karnaugh map). As shown in Fig. 13, using a matrix indexing item
combinations, and display the integer value on each element. We call this an
Integer Karnaugh map. It is useful to understand the behavior of the VSOP
data, but they are practical only for fewer than five or six items.

(Sorting by values). In some cases, it is useful to make sorting of the product
terms in terms of their values. For example, the expression 2ab + 3ac + 2b −
bc + 3 can be listed as follows.

3: ac + 1
2: ab + b

−1: bc

(Bit-wise listing). We can list the respective digits of the internal ZBDD vec-
tor representation. It is used for observing the relationship of VSOP data
and the internal data structures.

(Statistical information). To know the total number of product terms in a
VSOP expression corresponds to compute the number of solutions for a

a b : c d
| 00 01 11 10

00 | 0 0 0 3
01 | 1 25 2 0
11 | 0 0 -4 -2
10 | 1 0 -1 0

Fig. 13. Integer Karnaugh map

VSOP Calculator for Knowledge Processing Based on ZBDDs 51

combinatorial problem. Although the number may become an exponential
to the number of items, we can quickly count it only in a linear time to the
ZBDD size. In addition, we can get other statistical information such as the
density of the solutions, and the number of ZBDD nodes.

(Any satisfiable solutions). Sometimes we do not have to display all the so-
lutions, just needed to see any one solution (or a counter example). If a
ZBDD for the VSOP data has been constructed, it is easy (in a time linear
to number of items) to show any one product term, even if the VSOP data
is too complicated to display all at once.

When each item has a cost to use in a combination, we can also find
the minimum (or maximum) cost combinations in the VSOP data. This
operation can be executed in a linear time to the ZBDD size.

Our program can also display the maximum (or minimum value) in the
VSOP data. In addition, the set of items used in the given VSOP data can
be listed.

6 Applications

Based on ZBDD techniques, we developed an arithmetic calculator to handle
large-scale sum-of-products expressions with a number of item symbols. Here we
briefly present the specification of VSOP and some typical applications.

6.1 VSOP Calculator

This program, called VSOP, has a C-shell-like interface, both for interactive
keyboard inputs and batch style execution from a script file. The program is
written in C, C++, and yacc, executable on 32bit Linux PCs.

In VSOP scripts, we can use two kind of symbols, item symbols and program
variables. Item symbols, denoted by strings starting with a lower-case letter,
represent the items used in the set of combinations. Program variables, starting
with an upper-case letter, are used to identify the memory to which a computa-
tion result to be stored temporarily. We can describe multi-level expressions by
using these two type of symbols. Calculation results are displayed in expressions
of including item symbols only, not using program variables. VSOP allows up to
65,510 different item symbols to be used, and no limit for program variables, as
long as the ZBDD nodes are handled in the main memory.

VSOP calculator supports not only set operations but also numerical arith-
metic operations based on Valued-Sum-Of-Products algebra, as presented in the
previous sections. The program parses the script only from left to right. Neither
branches nor loop controls are supported. However, using another script pro-
cessor such as C-shell or Perl, we can generate a straight VSOP script file by
unrolling the complicated control structures, and feed it to the VSOP calculator
by pipelined manner.

Our program need a few seconds to calculate VSOP expressions which are the
size of human-readable or writable. More than ten millions of ZBDD nodes can

52 S. Minato

be handled according to main memory capacity. Our ZBDD package uses about
30 byte memory per node. Calculation results are displayed in various formats
as shown previously. Figure 14 shows a simple execution example.

***** VSOP calculator <v0.95> *****
vsop> symbol a b c d e
vsop> F = (a + 2 b)(c + d)
vsop> print F
a c + a d + 2 b c + 2 b d

vsop> print /rmap F
a b : c d

| 00 01 11 10
00 | 0 0 0 0
01 | 0 2 0 2
11 | 0 0 0 0
10 | 0 1 0 1

vsop> G = (2 a - d)(c - e)
vsop> print G
2 a c - 2 a e - c d + d e

vsop> H = F * G
vsop> print H
4 a b c d - 4 a b c e + 4 a b c - 4 a b d e + a c d e -
2 a c e + 2 a c - a d e + 2 b c d e - 4 b c d + 2 b d e

vsop> print /count H
11

vsop> print /size H
24 (35)

vsop> quit

Fig. 14. Example of execution

6.2 Basic Performances

To evaluate our method, we constructed VSOP expressions of large number of
product terms with large values. In this experiments, we used a Pentium-4 PC
(800MHz, 512MB, SuSE Linux 9). We can deal with up to about 10,000,000
ZBDD nodes in this machine.

We first generated ZBDDs for large constant numbers. 100 !, which becomes as
much as a 160 digits of decimal number, can be represented with only 121 nodes
of ZBDD, in 0.2 second to compute it. Next we tried calculating Πn

k=1(xk + k).
As shown in Table 1, within a feasible time and space, we can generate ZBDDs
for extremely large-scale expressions, some of which consist of millions of terms.

Table 1. Generating VSOPs for Πn
k=1(xk + k)

n #Terms Max.value #Nodes Time(s)
4 16 24 16 0.002
8 256 40,320 199 0.007

12 4,096 479,001,600 1,866 0.108
16 65,536 20,922,789,888,000 9,383 0.689
20 1,048,576 (2.43 × 1018) 76,705 14.399
24 16,777,216 (6.20 × 1023) 530,308 276.993

VSOP Calculator for Knowledge Processing Based on ZBDDs 53

6.3 Database Analysis (Application for Knowledge Federation over
the Web)

As one of the promising applications, we will show that the VSOP calculator
facilitates “knowledge federation over the web”. Usually, the knowledge on the
web consists of a number of distributed data, and one important task is to find a
hidden data group strongly related each other over a huge amount of web space.
We will show the experimental results to extract combinations of web pages
which are frequently appearing together in a session of web transactions.

Here we consider one of the popular benchmark data of web data mining,
“BMS-WebView1” and “BMS-WebView-2”[20]. These datasets contain several
months worth of clickstream data from two e-commerce web sites. Each transac-
tion in these datasets is a web session consisting of all the product detail pages
viewed in that session. That is, each product detail view is an item. The goal
for both of these datasets is to find associations between products viewed by
visitors in a single visit to the web site.

Here we show the way to applying VSOP calculator. The basic structure of
the dataset is as follows. One line corresponds to one record, and the numbers
represents IDs of items included in the record.

1 3 9 13 23 25 34 36 38 40 52 54 59 63 67
2 3 9 14 23 26 34 36 39 40 52 55 59 63 67
...

In this database, the similar item combinations (sub patterns) appear many
times in multiple records. To count the frequency (number of appearances) of the
patterns is an important and fundamental problem in data mining techniques[2],
which is regarded as the basis of knowledge processing. Using VSOP calculator,
we can efficiently construct the pattern histogram and applying various analysis
operations to the histogram data. At first, we transform the above database file
into the following VSOP script.

P = 0
P = P + (1+x1)(1+x3)(1+x9)(1+x13)(1+x23)(1+x25)(1+x34)(1+x36)

(1+x38)(1+x40)(1+x52)(1+x54)(1+x59)(1+x63)(1+x67)
P = P + (1+x2)(1+x3)(1+x9)(1+x14)(1+x23)(1+x26)(1+x34)(1+x36)

(1+x39)(1+x40)(1+x52)(1+x55)(1+x59)(1+x63)(1+x67)
P = P + ...

Each line represents the set of all sub-patterns contained in one record. After
execution of this script for all records, the variable P holds the histogram for all
sub-patterns included in the database.

Once the histogram is generated, various queries can be applied as a sequence
of VSOP operations. For example,

print /count (P/30)

54 S. Minato

Table 2. Pattern-histogram generation for web transaction database

Name #Items ZBDD nodes Time(s) #Patterns
BMS-WebView1 263 68,103 2.48 155,120,368,024,193,688,104,957,723
BMS-WebView2 1,287 22,643 3.02 36,893,635,521,153,518,271

displays the number of product terms with the values more than 29, which
mean the number of frequent patterns included in more than 29 records in the
database. For another example,

print /count (P/(x1 x2))

shows the number of patterns including both x1 and x2.
We applied VSOP calculator to generate pattern-histograms for

“BMS-WebView1” and “BMS-WebView-2”. Both two dataset consists of more
than 10,000 records of transactions, but due to the limitation of memory capac-
ity, we selected only 1,000 records from the top of the database. The results are
shown in Table 2. In this table, #Items means a number of items used in the
1,000 records we selected. #Patterns shows the total number of sub-patterns
included in the histogram generated by VSOP calculator.

After generating a pattern-histogram, we can easily extract frequent pat-
tern sets from the histogram. For example, we can see that “BMS-WebView-
2” includes 108 patterns that appears at least 10 times in the 1,000 records.
Here is the output data of VSOP calculator that shows those frequent patterns.

x86055 + x84839 + x78687 + x203733 x203729 + x203733 +
x55899 x55891 + x55899 + x84159 + x222351 + x222319 + x55563 +
x55891 + x55535 + x84727 + x222439 + x55543 + x83547 + x84759 +
x83719 + x55275 + x203729 + x55555 + x56769 x56761 + x56769 +
x55843 + x222471 + x222335 + x55531 + x197025 + x55887 + x55871 +
x55855 + x222615 + x222459 + x222395 + x222339 x55351 +
x222339 x55271 + x222339 x55267 + x222339 + x56761 x55267 +
x56761 + x56037 + x55875 + x55559 + x55551 + x55487 + x55483 +
x55463 + x55351 x55271 x55267 x55295 + x55351 x55271 x55267 x55287 +
x55351 x55271 x55267 + x55351 x55271 x55295 + x55351 x55271 x55287 +
x55351 x55271 + x55351 x55267 x55295 + x55351 x55267 x55287 +
x55351 x55267 + x55351 x55319 + x55351 x55323 + x55351 x55295 +
x55351 x55287 + x55351 + x55315 x55267 + x55315 + x55291 +
x55271 x55267 x55295 + x55271 x55267 x55287 + x55271 x55267 +
x55271 x55283 + x55271 x222331 + x55271 x55323 + x55271 x55295 +
x55271 x55287 + x55271 + x55267 x55323 + x55267 x55295 +
x55267 x55287 + x55267 + x82719 + x55367 + x55319 + x55859 +
x55343 + x88683 + x84731 + x89453 + x55283 + x222331 + x222323 +
x55327 x55323 + x55327 + x55323 x55295 + x55323 + x55295 x55287 +
x55295 + x55287 + x222607 + x56765 + x55895 + x55863 + x55847 +
x55839 + x55835 x55831 + x55835 + x55831 + x55403 + x55455 + 1

VSOP Calculator for Knowledge Processing Based on ZBDDs 55

From this output data, we can find a hidden data group related each other
over a large amount of web transaction data.

Such ZBDD-based database analysis method is presented in [16] for more
detail.

6.4 Solving Constraint Satisfaction Problems

Okuno et al.[19] presented the way to solve various constraint satisfaction prob-
lems (CSP) using BDDs or ZBDDs. In this paper, they consider N-queens prob-
lems and magic square problems as examples of CSPs. Those problems can be
described by arithmetic Boolean expressions handling logic variables and numer-
ical numbers.

Previously, there is an arithmetic Boolean expression manipulator ”BEM-
II”[9] based on (ordinary) BDDs, and the program was utilized for many
works[17, 18, 8]. However, there have not been a good arithmetic calculator based
on ZBDDs, so the research of ZBDD applications for CSPs have not been active
as well as ordinary BDDs. Our VSOP calculator will extend the data model
from Boolean functions to combinatorial sets toward applications of knowledge
processing.

For example, to describe constraints for a magic square, we can write the
number for each square A, B, C . . . as:

A = a1 + 2 a2 + 3 a3 + 4 a4 + ...
B = b1 + 2 b2 + 3 b3 + 4 b4 + ...
C = ...

We then compute the following formula.

S = A (B != 0) + B (A != 0)

This result becomes as:

2 a1 b1 + 3 a1 b2 + 4 a1 b3 + 5 a1 b4 +
3 a2 b1 + 4 a2 b2 + 5 a2 b3 + 6 a2 b4 +
4 a3 b1 + 5 a3 b2 + 6 a3 b3 + 7 a3 b4 ...

We can see this expression enumerates the sum of two numbers at A and B for
all possible combinations. Next, the formula

S = S (C != 0) + C (S != 0)

produces the total number of A, B, and C for all possible combinations, and it
is stored in S. After that, the formula

C = (S == 15 (S != 0))

generates the constraint C such that the total S equals to 15. In similar man-
ner, we can generate VSOP data representing the constraints of all horizontal,
vertical, and diagonal lines.

In this way, we can describe various CSPs by using VSOP scripts, and easily
try solving it by VSOP calculator.

56 S. Minato

6.5 Probabilistic Symbolic Simulation

VSOP calculator is based on the arithmetic operation rules as x + x = 2x,
x × x = x, and x × y = xy. These rules are the same as the probabilistic calcu-
lation that the variables x and y represent probabilities. If the two events occur
independently, the logical AND becomes arithmetic products of two variables,
but if the two event are based on a same probabilistic variable, the logical AND
does not become x2 but just x. Consequently, VSOP calculator can be used for
probabilistic analysis of systems in various areas.

p (0.5)

q (0.5)

1-pq (0.75)

1-p+pq (0.75)

1-q+pq (0.75)

p+q-2pq (0.5)

Fig. 15. Probabilistic symbolic logic simulation

One good application is computing signal probability in logic circuits. As il-
lustrated in Fig. 15, on each primary input of the circuit, we assign a variable
representing the probability that the signal is ‘1’. Then, the probability at pri-
mary outputs and internal nets can be expressed exactly in VSOP expressions
using those probabilistic variables. On each logic gate with input A, B and out-
put Y , we can compute Y = A× B for AND gate, Y = A+ B − (A× B) for OR
gate, and Y = 1 − A for NOT gate.

This technique is applicable for various kinds of statistic analysis, such as
probabilistic fault simulation, estimating power consumption, and timing hazard
analysis.

7 Conclusion

We have presented a method of computing combinatorial item sets with numer-
ical values. This method consists of an efficient data structure, manipulation
algorithms, and helpful display formats. VSOP calculator, implemented based
on the above techniques, is customizable for various applications. We expect it
to be utilized as a helpful tool in solving many problems in computer science. In
future, we will release our program as open software to facilitate research and
development of knowledge processing.

We have presented a method of computing combinatorial item sets with nu-
merical values. This method consists of an efficient data structure, manipulation
algorithms, and helpful display formats. VSOP calculator, implemented based

VSOP Calculator for Knowledge Processing Based on ZBDDs 57

on the above techniques, is customizable for various applications. We have shown
one of the promising application to find a hidden data group related each other
over a huge amount of web space. This is one of the basic and important task
for knowledge federation over the web. We have also shown some other useful
applications such as solving CSPs and executing probabilistic simulation. In fu-
ture, we will release our program as open software to facilitate research and
development for various area.

Acknowledgment

The author thanks Prof. Arimura and Prof. Zeugmann of Hokkaido Univ. for
their technical comments. This study is partly supported by Grant-in-Aid Scien-
tific Research on Priority Area “Informatics”, 2004 (Area #006) and Scientific
Research (B), 2005, 17300041.

References

1. Akers, S. B., Binary decision diagrams, IEEE Trans. Comput., C-27, 6 (1978),
509–516.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, Fast Discovery
of Association Rules, In Advances in Knowledge Discovery and Data Mining, MIT
Press, 307–328, 1996.

3. R. K. Brayton, R. Rudell, A. Sangiovnni-Vincentelli, and A. R. Wang, ”MIS: A
multiple-level logic optimization system,” IEEE Trans. on CAD, vol. CAD-6, pp.
1062–1081, Nov. 1987.

4. Bryant, R. E., Graph-based algorithms for Boolean function manipulation, IEEE
Trans. Comput., C-35, 8 (1986), 677–691.

5. R. E. Bryant and Y.-A. Chen, ”Verification of arithmetic functions with binary
moment diagrams,” Proc. of 32nd ACM/IEEE Design Automation Conference
(DAC’95), session 32.1, June. 1995.

6. O. Coudert, ”Solving graph optimization problems with ZBDDs”, In Proc. of IEEE
The European Design and Test Conference (ED&TC’97), pp. 244-248, Mar. 1997.

7. B. Goethals, M. Javeed Zaki (Eds.), Frequent Itemset Mining Dataset Repository,
Frequent Itemset Mining Implementations (FIMI’03), 2003.
http://fimi.cs.helsinki.fi/data/

8. Y. Hayashi and J. Matsuki, ”Determination of Optimal System Configuration in
Japanese Secondary Power Systems,” IEEE Trans. on Power Systems, VOL. 18,
NO. 1, pp. 394–399, Feb. 2003

9. S. Minato: ”BEM-II: An Arithmetic Boolean Expression Manipulator Using
BDDs”, IEICE Trans. Fundamentals, Vol. E76-A, No. 10, pp. 1721-1729, Oct.
1993.

10. Minato, S., Zero-suppressed BDDs for set manipulation in combinatorial problems,
In Proc. 30th ACM/IEEE Design Automation Conf. (DAC-93), (1993), 272–277.

11. S. Minato: ”Calculation of Unate Cube Set Algebra Using Zero-Suppressed BDDs”,
In Proc. of 31st ACM/IEEE Design Automation Conference (DAC’94), pp. 420-
424, Jun. 1994.

58 S. Minato

12. S. Minato: ”Implicit Manipulation of Polynomials Using Zero-Suppressed BDDs”,
In Proc. of IEEE The European Design and Test Conference (ED&TC’95), pp.
449-454, Mar. 1995.

13. S. Minato: ”Binary Decision Diagrams and Applications for VLSI CAD”, Kluwer
Academic Publishers, November 1996.

14. S. Minato: ”Fast Factorization Method for Implicit Cube Set Representation”,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, VOL.
15, No. 4, pp. 377-384, Apr. 1996.

15. Minato, S., Zero-suppressed BDDs and Their Applications, International Journal
on Software Tools for Technology Transfer (STTT), Springer, Vol. 3, No. 2, pp. 156–
170, May 2001.

16. S. Minato and H. Arimura: ”Efficient Combinatorial Item Set Analysis Based
on Zero-Suppressed BDDs”, IEEE/IEICE/IPSJ International Workshop on Chal-
lenges in Web Information Retrieval and Integration (WIRI-2005), pp. 3–10, Apr.,
2005.

17. T. Miyazaki, Boolean-based formulation for data path synthesis, IEEE Asia-Pasific
Conference on Circuits and Systems ’APCCAS’92), pp. 201–205, Dec. 1992.

18. H.G. Okuno, ”Reducing Combinatorial Explosions in Solving Search-Type Combi-
natorial Problems with Binary Decision Diagram,” Trans of Information Processing
Soc. Japan (IPSJ), (in Japanese), vol. 35, no. 5, pp 739-753, May 1994.

19. H.G. Okuno, S. Minato, and H. Isozaki, On the properties of combination set
operations, Information Processing Letters, Vol. 66, pp. 195–199, May 1998.

20. Z. Zheng, R. Kohavi, and L. Mason, Real World Performance of Association Rule
Algorithms, In Proc. of ACM SIGKDD conference KDD-2001, pp. 401–406, 2001.

A Method for Pinpoint Clustering of Web Pages
with Pseudo-Clique Search

Makoto Haraguchi and Yoshiaki Okubo

Division of Computer Science,
Graduate School of Information Science and Technology, Hokkaido University,

N-14 W-9, Sapporo 060-0814, Japan
{mh, yoshiaki}@ist.hokudai.ac.jp

Abstract. This paper presents a method for Pinpoint Clustering of web
pages. We try to find useful clusters of web pages which are significant in
the sense that their contents are similar to ones of higher-ranked pages.
Since we are usually careless of lower-ranked pages, they are uncondi-
tionally discarded even if their contents are similar to some pages with
high ranks. Such hidden pages together with significant higher-ranked
pages are extracted as a cluster. As the result, our clusters can provide
new valuable information for users.

In order to obtain such clusters, we first extract semantic correla-
tions among terms by applying Singular Value Decomposition (SVD) to
the term-document matrix generated from a corpus. Based on the cor-
relations, we can evaluate potential similarities among web pages to be
clustered. The set of web pages is represented as a weighted graph G
based on the similarities and their ranks. Our clusters can be found as
pseudo-cliques in G. An algorithm for finding Top-N weighted pseudo-
cliques is presented. Our experimental result shows that a quite valuable
cluster can be actually extracted according to our method.

We also discuss an idea for improvement on meanings of clusters. With
the help of Formal Concept Analysis, our clusters, called FC-based clus-
ters, can be provided with clear meanings. Our preliminary experimen-
tation shows that the extended method would be a promising approach
to finding meaningful clusters.

1 Introduction

The World Wide Web is one of the most useful resources of information and
knowledge. We often try to obtain desired information or knowledge from web
pages on the Internet with an information retrieval (IR) engine, such as Google.
It is, however, not so easy to efficiently find useful pages because of the hugeness
of the web space. For example, Google often gets a number of web pages with
the order of hundred thousands for given keywords.

In general, only some of the higher-ranked pages are actually browsed and the
others are discarded as less important ones, since the list given by the IR system
contains a large number of pages. However, there might exist many pages which
are unfortunately lower-ranked but are significant in the sense that their contents

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 59–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

60 M. Haraguchi and Y. Okubo

are similar or closely related to higher-ranked pages. They can be considered
implicitly significant pages. By making such hidden but valuable pages visible,
our chance to get valuable information or knowledge from web pages can be
enhanced. As the result, we can enjoy the Web as a more useful and abundant
knowledge resource.

From this point of view, we discuss in this paper a method for Pinpoint
Clustering of web pages retrieved by an IR system. In order to make hidden
lower-ranked but valuable pages visible, extracting clusters of web pages will be
an important task. In a word, our method tries to extract clusters consisting of
higher and lower-ranked pages with similar contents. Such clusters of web pages
compactly tell us what page contents the IR system has retrieved for the given
keywords. As the result, we would roughly understand the contents of the pages
retrieved by the system.

Several clustering methods for web pages have been already investigated (e.g.
refer to [2]). Many of them are based on the traditional hierarchical or partitional
clustering methods. In these methods, the whole set of retrieved web pages is
divided into several clusters. This means that each page always belongs to some
cluster. Although the number of clusters to be obtained is usually controlled by
a user-defined parameter, it is well known that providing an adequate value for
the parameter is quite difficult. If the number is too large, we will often obtain
many useless clusters. Furthermore, in the computational point of view, the cost
of constructing useless clusters is quite wasteful. On the other hand, if it is too
small, interesting clusters will be missed.

These observations motivate us to investigate a new clustering method, Pin-
point Clustering, by which we can efficiently extract only nice clusters whose
evaluation values are in the top-N , where N can be given arbitrarily. By such
a method, we will never suffer from quite useless clusters. Furthermore, extract-
ing only nice clusters has also an advantage in the computation. We can enjoy
a branch-and-bound search in order to extract them. In our search, we do not
have to examine many branches concerning clusters not in the top N . Therefore,
it is expected that our method can extract nice clusters with reasonable time
even for a large data set.

In order to realize it, we first extract semantic correlations among terms by
applying Singular Value Decomposition(SVD) [3] to the term-document matrix
generated from a corpus with a specific topic. Given a set of ranked web pages
to be clustered, we can evaluate potential similarities among them based on the
semantic correlations of terms. In previous approaches [2], similarities among
web pages are often determined based on the link structure of web pages. More
concretely speaking, it has been considered that web pages with similar topi-
cal contents have dense links among them. Such a link structure might roughly
reflects similarities among relatively mature pages. However, many interesting
pages are newly released day by day and it is often difficult to expect a dense
link structure of fresh pages. As the result, based on the link-based approach,
we will fail in finding similarities among such new pages even if they have simi-
lar contents. On the other hand, we try to capture similarities among web pages

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 61

independently of their link structure. With the help of SVD, we take some seman-
tic correlations among terms into account. Based on the correlations, potential
similarities among contents of web pages can be captured.

The set of web pages to be clustered is then represented as a weighted undi-
rected graph G based on the (potential) similarities and their ranks. If a pair
of pages have a similarity higher than a given threshold, they are connected by
an edge. Moreover, each vertex (i.e. a web page) is assigned a weight so that
higher-ranked pages have higher weights. Our clusters can be extracted by find-
ing pseudo-cliques in the graph G. The notion of pseudo-cliques has been first
introduced in [13, 14] to address an issue of overlapping exact cliques. A pseudo-
clique is defined as a union of several exact maximal cliques in G with a required
degree of overlap. In the strict sense, therefore, it is no longer a clique and is
regarded as an approximation of exact cliques.

Simple theoretical properties of pseudo-cliques are presented. Based on the
properties, we can obtain some pruning rules for pseudo-clique search. We de-
sign a depth-first branch-and-bound algorithm for finding pseudo-cliques whose
weights are in the top N , where the weight of a pseudo-clique is evaluated as the
sum of the vertex weights in it. Our preliminary experimental result shows that a
quite valuable cluster consisting of similar higher-ranked and lower-ranked pages
can be actually extracted as a pseudo-clique in G.

One might claim that a naive method would be sufficient for extracting such
a cluster. That is, for a web page with a higher rank, we can gather lower-
ranked pages which are similar to the higher-ranked one. As well as this kind of
clusters, our method can extract other various kinds of clusters simultaneously
by changing the weighting of web pages in our graph construction process. Under
some weighting, for example, a cluster consisting of several similar pages which
are moderately ranked might be obtained as in the top N . In this sense, our
method includes such a naive method.

A meaningful cluster should have a clear explanation why the pages in the
cluster are grouped together or what the common features in the cluster are.
Our method described just above, unfortunately, does not have any mechanism
to provide it clearly. If such an explanation mechanism is integrated, our clus-
tering method would be more convincing. We also discuss in this paper an idea
for improvement on this point. We try to realize it with the help of Formal
Concept Analysis [8]. A formal concept explicitly gives its conceptual meaning,
intent and extent. By extracting only clusters (cliques) corresponding to formal
concepts, each cluster can be provided with some clear conceptual meaning. We
call this kind of cluster an FC-based cluster. It is also noted that since cliques
to be extracted are restricted further, another pruning mechanism is available
in our FC-based cluster search. Our preliminary experimental results show some
interesting characteristics of FC-based clusters.

Our pinpoint clustering method by clique search is a general framework. The
literature [9, 12] has investigated methods for finding appropriate data abstrac-
tions (groupings) of attribute values for classification problems, where each ab-
straction is extracted as a weighted exact clique. A gene expression data has

62 M. Haraguchi and Y. Okubo

been also processed in [10]. A cluster consisting of genes which behave simi-
larly is extracted as an exact clique. The pinpoint clustering of web pages has
originated in [11] and has been then extended in order to address a problem
of overlapping clusters (cliques) [13]. This paper presents our current method
of web page clustering and discuss further improvement in meaningfulness of
clusters from the viewpoint of Formal Concept Analysis.

The remainder of this paper is organized as follows. In the next section, we
introduce some basic terminologies used throughout this paper. In Section 3, we
discuss semantic similarities among web pages. Section 4 formalizes our pinpoint
clustering as a Top-N weighted pseudo-clique problem. Our experimental results
are presented in Section 5. Section 6 presents an idea by which our cluster can be
provided with a conceptual meaning with the help of Formal Concept Analysis.
Characteristics of FC-based clusters are also discussed. In the final section, we
conclude this paper with a summary.

2 Preliminaries

A simple graph is denoted by G = (V, E), where V is a set of vertices and
E ⊆ V × V a set of (undirected) edges, that is, any edge (v, v′) ∈ E is identified
with (v′, v). For any vertices v, v′ ∈ V , if (v, v′) ∈ E, v is said to be adjacent to
v′. If any pair of vertices v, v′ ∈ V (v �= v′) are adjacent each other, then G is said
to be complete. For a vertex v ∈ V , the set of vertices adjacent to v is denoted by
NG(v), that is, NG(v) = {v′ | v′ ∈ V ∧ (v, v′) ∈ E}. The size of NG(v), |NG(v)|,
is called the degree of v in G. It is often referred to as degreeG(v). If it is clear
from the context, they are simply denoted by N(v) and degree(v), respectively.
If each vertex v ∈ V is assigned a positive weight, the graph is called a weighted
graph. The weight of v is referred to as w(v). For a vertex set V ′ ⊆ V , the weight
of V ′, denoted by w(V ′), is simply defined as the sum of individual weights, that
is, w(V ′) =

∑
v∈V ′ w(v). In this paper, we are concerned with a weighted graph

unless stated otherwise.
For a graph G = (V, E), let V ′ be a subset of V . A subgraph of G induced

by V ′, denoted by G(V ′), is defined by G(V ′) = (V ′, E ∩ V ′ × V ′). A complete
subgraph is called a clique in G. We simply refer a clique as the set of vertices
by which it is induced. For cliques C and D in G, if C ⊂ D, then D is said to be
an extension of C. Moreover, if there exists no clique D′ such that C ⊂ D′ ⊂ D,
D is called an immediate extension of C. For a clique C in G, if there exists
no extension of C, then C is said to be maximal. A maximal clique with the
largest size is especially called a maximum clique. It should be noted here that
in general a maximum clique is not uniquely found in G.

3 Semantic Similarity Among Web Pages

In order to find clusters of web pages, we have to measure similarities among
web pages. For the task, we adopt technique in Information Retrieval (IR) [4].

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 63

3.1 Term-Document Matrix

Let D be a set of documents and T the set of terms appeared in D. Note
here that in order to obtain such terms from documents without spaces among
words (like Japanese documents), we need to apply Morphological Analysis to
D. We first remove too frequent and too infrequent terms from T . The set of
remaining terms, called feature terms, is denoted by T ∗. Supposing |T ∗| = n,
each document di ∈ D can be represented as an n-dimensional document vector

di = (tfi1, . . . , tfin)T ,

where tfij is the frequency of the term tj ∈ T ∗ in the document di. Thus, the
set of documents D can be translated into a term-document matrix

(d1, . . . ,d|D|).

3.2 Extracting Semantic Similarity with SVD

For the term-document matrix, we apply Singular Value Decomposition(SVD)
in order to extract correlations among feature terms [4].

An m × n matrix A can be decomposed by applying SVD as

A = UΣV T ,

where U and V are m × m and n × n orthogonal matrices, respectively. Each
column vector in U is called a left singular vector and one in V right singular
vector. Σ is an m × n matrix of the form

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1 O
. . . Or×(n−r)

O σr

O(m−r)×r O(m−r)×(n−r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where rank(A) = r (r ≤ min{m, n}) and σ1 > · · · > σr > 0. Each σi is
called a singular value. First r left singular vectors u1, . . . ,ur correspond to a
orthonormal basis and define a new subspace of the original one in which column
vectors of A exist. The m × r matrix (u1, . . . ,ur) is denoted by Ur.

Let us assume the matrix A is a term-document matrix obtained from a set of
documents. Intuitively speaking, by applying SVD to A, we can capture potential
but not presently evident correlations among the feature terms.Highly semantically
correlated terms give a base vector ui and define a dimension corresponding to a
compound term. Such new base vectors define a new subspace based on compound
terms. For documents d1 and d2 not in A, therefore, if they are projected on the
subspace, we can find similarity between them based on the semantic correlations
among feature terms captured from the original documents in A.

64 M. Haraguchi and Y. Okubo

In order to take such semantic similarities of web pages into account, we pre-
pare a corpus of documents written about some specific topic. Then by applying
SVD to the term-document matrix generated from the corpus, we obtain a sub-
space reflecting semantic correlations among feature terms in the corpus. Let Ur

be the orthonormal basis defining the subspace. It should be noted here that in
an actual Information Retrieval, we do not always use r left singular vectors.
A part of them, that is, Uk = (u1, . . . ,uk) (k < r) is usually used for approxi-
mation. Such an approximation technique with Uk is known as Latent Semantic
Indexing (LSI) [4].

Besides the corpus, with some keywords related to the corpus topic, we retrieve
a set of web pages P from which we try to obtain clusters. Using the same feature
terms for the corpus, each document pi ∈ P is represented as a vector

pi = (tfi1, . . . , tfin)T ,

where tfij is the frequency of the feature term tj in pi. Then each web page pi

is projected on the subspace as

pr
i = UT

r pi.

A similarity between web pages pi and pj , denoted by sim(pi, pj), is defined
based on the standard cosine measure, that is,

sim(pi, pj) =
pr

i ·pr
j

‖ pr
i ‖ × ‖ pr

j ‖ .

4 Pinpoint Clustering of Significant Web Pages

We usually try to find significant web pages according to their ranks assigned by
an IR system. In many cases, we browse higher-ranked pages and often realize
that some of them are actually significant. On the other hand, we will usually
discard lower-ranked pages without browsing, since they appear in the lower
part of a large ranking list. However, if such lower-ranked pages have contents
similar to significant pages with higher-ranks, they will be surely valuable for
us. In this sense, they can be considered implicitly significant pages. From this
point of view, it would be worth finding clusters each of which consists of

– significant (probably higher-ranked) pages and
– other pages with contents similar to the significant ones.

We present here our pinpoint clustering method for finding this kind of valuable
clusters of web pages. Especially, we try to extract such clusters whose evaluation
values are in the Top-N .

4.1 Clusters as Weighted Maximal Cliques

Our web page clusters are extracted as Pseudo-Cliques, an approximation of
exact cliques. In order to find this kind of cliques, a set of web pages to be
clustered is represented as a weighted undirected graph.

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 65

Let P be a set of web pages retrieved by an IR system with some keywords.
We try to obtain clusters from the web pages. It is assumed that each page
p ∈ P is assigned its rank by the system, denoted by rank(p). The pages to be
clustered are represented as a weighted (undirected) graph G.

Let δ be a minimum threshold for similarities among web pages. Our graph
G is defined by G = (P , Eδ), where for any pi, pj ∈ P (i �= j), (pi, pj) ∈ Eδ if
and only if sim(pi, pj) ≥ δ. That is, we regard any pair of pages with similarity
greater than or equal to δ as similar ones. Moreover, each vertex p is weighted
so that the higher the rank of page, the higher its weight.

It is clear from the graph construction process that a cluster consisting of
web pages which are similar each other can be extracted by finding a maximal
clique in G. Since there are in general many maximal cliques, it would be rea-
sonable to extract only preferable ones. From this viewpoint, as in [9, 12, 10, 11],
we can pay our attention to maximal cliques whose evaluation values are in the
Top-N , where each clique is evaluated by its weight. Intuitively speaking, since
web pages with higher ranks are assigned higher weights in the graph, a clus-
ter (clique) containing higher-ranked pages tends to be preferable. Moreover, a
cluster consisting of many pages might be also preferred.

Such a tendency is highly dependent on how each page is actually weighted in
the graph. For example, the weight of a page p is defined in inverse proportion
to its rank, that is, w(p) = 1/rank(p). As another one, p might be weighted
linearly as w(p) = |P|−rank(p)+1. Roughly speaking, by the former weighting,
a cluster containing higher-ranked pages is preferred even if its size is not so
large. By the latter, on the other hand, we can make a point of cluster size.
That is, larger clusters are basically preferred under the weighting. Thus, we
can control our preference in clusters by providing various weighting functions
for the pages.

4.2 Finding Clusters by Top-N Pseudo-Clique Search

As has been just described, we can extract preferable clusters as Top-N weighted
maximal cliques. However, we sometime encounter a case where each maximal
clique in the top N shares most of the vertices with others. In order to address
such an issue, we introduce a notion of Pseudo-Cliques. Then we try to extract
maximal pseudo-cliques whose weights (evaluation values) are in the top N .

Top-N Weighted Pseudo-Clique Problem
We formally discuss here the notion of pseudo-cliques and define our problem
of finding Top-N weighted pseudo-cliques in a given graph. A pseudo-clique
is constructed from a class of maximal cliques sharing some vertices. Before
giving the formal definition, we first define a degree of overlap for a class of
maximal cliques.

Definition 1. (Degree of Overlap for Maximal Clique Class)
Let G be a graph and C = {C1, . . . , Cm} a class of maximal cliques in G.
The degree of overlap for C, denoted by overlap(C), is defined as overlap(C) =
minCi∈C

{∣∣∩Cj∈CCj

∣∣ /|Ci|
}

.

66 M. Haraguchi and Y. Okubo

Using the notion of overlap degree, our pseudo-cliques is defined as follows.

Definition 2. (Pseudo-Clique)
Let G be a graph and C = {C1, . . . , Cm} a class of maximal cliques in G. pseudo(C)
= ∪Ci∈CCi is called a pseudo-cliques with the overlap degree overlap(C). Its size
and weight are given by |pseudo(C)| and w(pseudo(C)) = Σv∈pseudo(C)w(v), re-
spectively. Moreover, the shared vertices,

⋂
Ci∈C Ci, is called the core and the other

vertices, pseudo(C) −
⋂

Ci∈C Ci, surroundings of the pseudo-clique.

It is noted here that we do not assume the weight of pseudo-clique should
be defined as the sum of vertex weights. Technically speaking, any monotone
weight under the set inclusion can be accepted in the following discussion.

From Definition 2, we have to accept any pseudo-clique that has little shared
vertices as its core. However, such a pseudo-clique would not be so meaningful,
since it is not convincing to combine cliques with a low commonality into a
group. We consider a pseudo-clique with a certain degree of core to be valid.

Definition 3. (τ-Validness of Pseudo-Clique)
Let C̃ be a pseudo-clique constructed from a class of maximal cliques and τ an
admissible threshold for overlap degree. If the overlap degree of C̃ is greater than
or equal to τ , C̃ is said to be τ-valid.

We can now formally define our problem of finding Top-N weighted pseudo-
cliques.

Definition 4. (Top-N Weighted Maximal Pseudo-Clique Problem)
Let G be a graph and τ an admissible threshold for overlap degree. The Top-
N Weighted Maximal Pseudo-Clique Problem is to find any τ -valid maximal
pseudo-clique in G such that its weight is in the top N in descending order.

Algorithm for Finding Top-N Weighted Pseudo-Cliques
Given a graph G = (V, E), an admissible threshold τ for overlap degree, we find
Top-N weighted maximal pseudo-cliques which are τ -valid. Before presenting
our algorithm for extracting them, we give some basic theoretical properties of
τ -valid pseudo-cliques.

For a clique Q in G, we try to find a τ -valid pseudo-clique C̃ whose core is
Q. In order to precisely discuss how it can be found, we introduce a notion of
extensible candidates for a given clique.

Definition 5. (Extensible Candidates for Clique)
Let G = (V, E) be a graph and Q a clique in G. A vertex v ∈ V adjacent to
any vertex in Q is called an extensible candidate for Q. The set of extensible
candidates is denoted by cand(Q).

Note that for any vertex v ∈ cand(Q), Q ∪ {v} is still a clique in G.
From the definition, we can easily observe the followings.

Observation 1
Let Q and Q′ be cliques in G such that Q ⊆ Q′. Then, cand(Q) ⊇ cand(Q′) and
w(Q) + w(cand(Q)) ≥ w(Q′) + w(cand(Q′)) hold.

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 67

For a clique Q, any maximal clique Cmax in G such that Q ⊆ Cmax can be
obtained by expanding Q with some vertices in cand(Q). This implies that the
weight of a pseudo-clique with the core Q is at most w(Q) + w(cand(Q)). Based
on this fact and Observation 1, therefore, a simple property can be derived.

Observation 2
Let Q be a clique. Assume we already have tentative Top-N weighted maximal
pseudo-cliques and the minimum weight of them is wmin. If w(Q)+w(cand(Q)) <
wmin holds, then for any extension Q′ of Q, there exists no pseudo-clique with
the core Q′ whose weight is finally in the top N .

Let Q be a clique in G and τ an admissible threshold for overlap degree.
Assume that a τ -valid pseudo-clique C̃ contains Q as its core. C̃ can be obtained
as the union of any maximal clique C in G such that Q ⊆ C and |Q|/|C| ≥ τ . It
should be noted here that for such a clique C, there exists a maximal clique D
in G(cand(Q)) such that Q ∪ D = C. That is, finding any maximal clique D in
G(cand(Q)) such that |Q|/(|Q|+|D|) ≥ τ is sufficient to obtain the pseudo-clique
C̃, where vertices in D are surroundings of C̃.

Thus, in order to extract C̃, we need to find any maximal clique in G(cand(Q))
satisfying a certain condition. One might claim that such a task is quite expensive
from the computational point of view. However, the authors expect that it would
not be so costly because of the following reasons:

– For a smaller core Q, we need to find only maximal cliques in G(cand(Q))
whose sizes are less than or equal to a relatively small value defined by τ
and |Q|. Since small maximal cliques can be found efficiently, the task would
be performed with reasonable cost.

– For a larger core Q, on the other hand, we have to extract larger maximal
cliques from G(cand(Q)). In general, however, the larger Q becomes, the
smaller G(cand(Q)) gets. The task of finding maximal cliques in a small
graph would not be so difficult.

The former argument is supported by the fact that we can apply the following
simple pruning rule in our maximal clique search, that is, surroundings search.

Observation 3
For a clique Q in G, let us assume that we try to find a τ -valid pseudo-clique C̃
whose core is Q. For a clique D in G(cand(Q)), if |D| > (1

τ − 1) · |Q|, then any
extension of D is useless for obtaining C̃.

As has been just discussed, in order to extract a pseudo-clique with the core
Q, we are in general required to extract maximal cliques from G(cand(Q)) to
identify its surroundings. In a certain case, however, we can immediately obtain
such a pseudo-clique without maximal clique search.

Observation 4
Let Q be a clique in G and τ an admissible threshold for overlap degree. If the
following conditions hold, then Q ∪ cand(Q) is a τ -valid maximal pseudo-clique
with the core Q.

68 M. Haraguchi and Y. Okubo

– (1
τ −1)·|Q| ≥ k holds, where k is an upper bound for the size of the maximum

clique in G(cand(Q)).
– For any v ∈ cand(Q), degreeG(cand(Q))(v) < |cand(Q)| − 1 holds.

The former condition is sufficient to show that Q∪cand(Q) is a τ -valid maxi-
mal pseudo-clique. In that case, however, its core is not always Q The core might
be an extension of Q. The latter condition ensures that the pseudo-clique exactly
contains Q as the core.

Upper bounds for the maximum clique size have been widely utilized in effi-
cient branch-and-bound algorithms for finding maximum cliques [5, 6, 12]. The
literature [6] has summarized several classes of upper bounds. Any upper bound
including them can be also adopted in our pseudo-clique search. According to
the argument in [6], the (vertex) chromatic number χ can be tightest among
well-known upper bounds. It is, however, identifying χ is an NP -complete prob-
lem. Therefore, approximations of χ have been utilized in algorithms previously
proposed [5, 6, 12]. In our system, a sequential approximate coloring in [5] is
currently adopted.

procedure main() :
V ← the set of vertices in a graph ;
E ← the set of edges in the graph ;
N ← an integer for Top-N ;
τ ← a threshold for overlap degree ;
PC ← φ;
weight num ← 0 ;
min weight ← 0 ;
FindPseudoCliques(φ, V) ;
return PC ;

procedure FindPseudoCliques(Q, R) :
if weight num = N and w(Q) + w(R) < min weight then

return ; /* Based on Observation 2 */
endif
for each v ∈ R in predetermined order

begin
MC ← φ ;
α ← (1

τ
− 1) · (|Q| + 1) ;

k ← an upper bound of the maximum clique in R ∩ N(v) ;
if k ≤ α then

if ∀w ∈ R ∩ N(v), degreeG(R∩N(v))(w) < |R ∩ N(v)| − 1 then

MC ← {R ∩ N(v), φ} ; /* Based on Observation 4 */
else

FindMaxCliques(φ, R ∩ N(v)) ; /* Surroundings Search */
endif

else
FindMaxCliques(φ, R ∩ N(v)) ; /* Surroundings Search */

endif
if Ci∈MC Ci = φ then

if weight num < N or w(Ci∈MC Ci ∪ Q ∪ {v}) ≥ min weight then

PC ← PC ∪ { Ci∈MC Ci ∪ Q ∪ {v}} ;
weight num ← |{w(PC) | P C ∈ PC}| ;
min weight ← min{w(P C) | P C ∈ PC} ;

endif
endif
FindPseudoCliques(Q ∪ {v}, R ∩ N(v)) ;

end

procedure FindMaxCliques(Q, R) :
if |Q| > α then

return ; /* Based on Observation 3 */
endif
if R = φ then

MC ← MC ∪ {Q} ;
return ;

endif
for each v ∈ R in predetermined order

FindMaxCliques(Q ∪ {v}, R ∩ N(v)) ;

Fig. 1. Algorithm for finding Top-N weighted τ -valid pseudo-cliques

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 69

From the above theoretical properties, Top-N τ -valid weighted pseudo-cliques
can be extracted by a depth-first branch-and-bound algorithm similar to ones
in [5, 7]. Our pseudo-clique search is a hybrid of core search and surroundings
search. The former generates a candidate of core to be examined. For the core
candidate, the latter tries to find its surroundings. This procedure is iterated
until no core candidate is generated.

More concretely speaking, for a clique Q in G, we try to find a τ -valid
pseudo-clique C̃ with the core Q by extracting maximal cliques (surroundings)
in G(cand(Q)). If w(C̃) is greater than or equal to the minimum weight in a
tentative Top-N list, then C̃ is temporarily registered in the list. After that,
for an immediate extension of Q, Q′, we apply the same procedure to ex-
tract a τ -valid weighted pseudo-clique with the core Q′. From Observation 2,
if w(Q) + w(cand(Q)) is smaller than the minimum weight in the tentative list,
we do not have to examine any extension of Q. Starting with the initial Q of
the empty set, the above procedure is iterated in depth-first manner until no
Q remains to be examined. A precise description of our algorithm is shown in
Figure 11.

5 Experimental Results

In this section, we present our experimental results2. The main purpose of this
experimentation is to confirm that we can actually obtain a useful cluster of web
pages consisting of higher-ranked pages and any other similar (or related) pages
with lower ranks.

In order to capture semantic correlations among terms, we have prepared a
Japanese corpus constructed from 100 web pages written about “Hokkaido”.
These pages have been manually selected and only visible texts on them have
been manually gathered3. After an application of Morphological Analysis, we
have obtained 2224 nouns appeared in the corpus. Nouns with frequencies more
than 1000 and less than 2 were removed from them. The remaining 211 nouns
were regarded as feature terms. Applying SVD to our term-document matrix
constructed from the corpus, we have obtained a new 98-dimensional subspace.

Besides the corpus, we have retrieved 829 (Japanese) web pages by Google
with the keywords “Hokkaido” and “Sightseeing”. We have tried to extract sig-
nificant clusters from these pages.

Each web page has been first represented as a document vector w.r.t. the
original feature terms and then projected on the 98-dimensional subspace in
order to capture potential similarities among pages. For any pair of pages, then,
we have evaluated the similarity between them based on the cosine measure.
Under the setting of δ = 0.95, we have constructed a weighted graph G from
the pages. That is, if the angle between two pages is less than or equal to about
1 An unweighted version is found in [14].
2 Our system has been implemented in C language and run on a PC with Xeon-2.40

GHz CPU and 512MB memory.
3 That is, they are subjective, not objective in a strict sense.

70 M. Haraguchi and Y. Okubo

18.2 degree, then they are connected by an edge. The numbers of vertices and
edges are 829 and 798, respectively. Each page (vertex) d has been assigned
a weight defined as w(d) = 1/rank(d)2. As has been stated in the previous
section, although we can define various weights according to ranks of pages, we
have currently adopted the reciprocal of the rank squared. The reason why we
prefer this measure is as follows:

– It is sensitive to difference of ranks in higher range.
– On the other hand, in lower range, page weights are hardly affected by

difference of ranks.

From the characteristics, a clique containing higher-ranked pages is likely to be
extracted even if its size is relatively small. Since we can often expect higher-
ranked pages are significant, such a phenomenon would be desirable. On the other
hand, we are usually careless of lower-ranked pages. In other words, difference of
weights among lower-ranked pages would be unimportant for us. In this sense,
a likelihood of extracting pseudo-cliques should not be sensitively affected by
weights of pages with lower ranks. The above measure would be reasonable from
this viewpoint as well.

We have tried to extract Top-15 weighted 0.8-pseudo cliques in the graph.

Example of Extracted Interesting Cluster
Among the extracted clusters (pseudo-cliques), the authors especially consider
that the 11th cluster was quite interesting.

The cluster consists of 6 web pages. Table 1 shows their ranks assigned by
Google and subjects. In the authors’ opinion, their contents are considered to
be very similar in the sense that all of them give us some information about
accommodations in Hokkaido, especially information about hotels and foods.
The 11th and 328th pages are index pages for travel information and we can
make reservations for many hotels via the pages. The 416th page is an article in
a private BBS site for travels. The article reports on a private travel in Hokkaido
and provides an actual and valuable information about a hotel and enjoyable
foods in “Furano”. The 797th and 798th personal pages give us the names of two
hotels serving smorgasbords in Hokkaido. The 826th page tells us several hotels
which were the most popular or were most frequently reserved in 2004.

Table 1. The 11th significant cluster

Page Rank Subject

11th Index page for travel information maintained by a local travel agency in Hokkaido
(especially, for travels in Hokkaido)

381st Index page for travel information maintained by a famous newspaper company (for
domestic and overseas travels)

416th An article on a private BBS for travels
797th Information about smorgasbords enjoyable at a hotel in Hokkaido
798th Information about smorgasbords enjoyable at another hotel in Hokkaido
826th Page for hotel awards in a famous travel site

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 71

Thus, the pages in the 11th cluster are closely related each other and give us
quite valuable information. When we try to make travel plans for sightseeing in
Hokkaido, we would often care about hotels and foods as important factors. In
such a case, the cluster will be surely helpful for us.

Effectiveness of Pseudo-Cliques
Similar to the literature [9, 12, 10, 11], we can find clusters of web pages by exact
clique search. In that case, however, the above 11th cluster can never be obtained.
The cluster (that is, a pseudo-clique) consists of two exact maximal cliques:
{11th, 382nd, 797th, 798th, 826th} and {382nd, 416th, 797th, 798th, 826th}. In the
exact case, the former can be ranked as 11th, whereas the latter cluster as 343rd.
It should be noted that the 416th page will be invisible unless we specify a
large N for Top-N . However, it would be impractical to specify such a large
N because many clusters are undesirably extracted. Although 416th page has
valuable contents as mentioned above, we will lose a chance to browse it.

In case of pseudo-clique search, the 343rd exact cluster can be absorbed into
the 11th cluster to form a pseudo-clique. In other word, the 343rd cluster can be
drastically raised its rank. As the result, 416th page can become visible by just
specifying a reasonable N .

Thus, our chance to get significant lower-ranked pages can be enhanced with
the help of pseudo-cliques. This is a remarkable advantage brought by pseudo-
cliques.

Effectiveness of SVD
As has been explained above, each web page is represented as a vector w.r.t. 211
feature terms. Then it is projected on the 98-dimensional subspace obtained with
the help of SVD. The similarity between any pair of pages is evaluated in the
subspace to capture some potential similarity among pages. For the web pages in
the 11th cluster, Table 2 shows the relationship between similarities evaluated in
the original space and in the subspace (that is, before the projection and after the
projection). The former similarities are presented in the right upper triangular
part (denoted by “Before”) and the latter in the left lower part (denoted by
“After”) of the table.

Before the projection, any pair of pages in the cluster was dissimilar. After
the projection, any similarity value has been increased. As has been mentioned
above, we can actually recognize some similarity among the pages in the cluster.
Although our retrieved 829 web pages contain several personal articles such as

Table 2. Similarities in the original space and in the subspace

After\Before 11th 382nd 416th 797th 798th 826th

11th – 0.015792 0.385671 0.645488 0.778707 0.73269
382nd 0.966010 – 0 0 0 0
416th 0.939910 0.977438 – 0.167191 0.222574 0.308913
797th 0.958302 0.963385 0.950516 – 0.890177 0.733688
798th 0.963662 0.964356 0.950265 0.996706 – 0.818672
826th 0.970196 0.977112 0.962140 0.955964 0.960545 –

72 M. Haraguchi and Y. Okubo

416th page (e.g. articles on Blogs), they did not belong to the 11th cluster. In
fact, such articles are not concerned with hotels and foods. For example, a Blog
article of the rank 337th presents some winter festivals in Hokkaido. In the 684th

page, a domestic tour conductor personally talks about actual job in ski tours
in Hokkaido. Thus, it would be difficult to find some similarity among these
pages and ones in the 11th cluster. From this fact, we consider that potential
similarities among web pages can be successfully captured with the help of SVD.

Statistics of Pseudo-Clique Search
Our experimental result also shows that the pruning rules presented in the previ-
ous section are very effective. The number of cores actually examined was 69981
and our pruning based on the tentative minimum weight were invoked at 40801
nodes of them. Moreover, the maximal clique searches were skipped at 31 nodes.
Thus, the pruning rules can be applied very frequently in our search. As the
result, the total computation time was just 0.847 second.

As we have experienced, an IR system often retrieves over hundreds of thou-
sands of web pages. Therefore our graph constructed from gathered web pages
would have a large number of vertices in more practical situation. In general,
however, our graph tends to be quite sparse. Therefore, it is expected that our
algorithm can still work well even in such a practical case.

From the experimental result, the authors consider that our pseudo-clique
search would be a promising approach to finding significant clusters of web pages.

6 Discussion on Meaningfulness of Clusters Based on
Formal Concept Analysis

As has been shown in the previous section, our clusters seem to provide valuable
information for us. Critically speaking, however, our method has weakness in
meanings of clusters. A cluster should have an explicit basis to show its meaning-
fulness. For example, a meaningful cluster is desired to have a clear explanation
why the individuals (web pages, in our case) of the cluster are grouped together.
Unfortunately, one may consider that our current clusters cannot satisfactorily
provide such a clear reason.

In order to overcome the weakness, we try to improve our method with Formal
Concept Analysis [8]. Formal Concept Analysis is a theory of data analysis which
identifies conceptual structures among objects (individuals).

6.1 Formal Concept Analysis

Let O be a set of objects and F a set of features (attributes). An object is
represented as the set of all features in F which the object has.

For a set of objects O ⊆ O and a set of features F ⊆ F , we define two
mappings ϕ : 2O → 2F and ψ : 2F → 2O, respectively, as follows.

ϕ(O) = {f ∈ F | ∀o ∈ O, f ∈ o} =
⋂
o∈O

o and ψ(F) = {o ∈ O | F ⊆ o}.

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 73

The former computes the feature set shared by every object in O. The latter, on
the other hand, returns the set of objects with F .

Based on the mappings, a Formal Concept (FC) is defined as a pair of object
and feature sets, (O, F), where O ⊆ O, F ⊆ F , ϕ(O) = F and ψ(F) = O.
Especially, O and F are called the extent and intent of the formal concept,
respectively. From the definition, it is obvious that ψ(ϕ(O)) = O and ϕ(ψ(F)) =
F . That is, a formal concept is defined as a pair of closed sets under the mappings.

For a formal concept FC = (O, F), by regarding the extent O as a cluster of
objects, we can obtain a clear reason why these objects are grouped together.
The objects can form the cluster because all of them share the features F and
any other object never has F . In this sense, the cluster O can be considered
meaningful. We try to take this kind of meaningfulness into account in our
clustering method.

6.2 Web Page Clusters as Formal Concepts

Representing a web page as a document vector, the similarity among pages
(documents) in our method is evaluated by the cosine measure. Then docu-
ments which are similar each other are grouped into a cluster. In this sense, our
current clusters are based on distance among documents. In order to give a con-
vincing basis for such a distance-based cluster, we have to make interpretation
of the distance clear. However, we would not be able to easily provide a good
interpretation.

On the other hand, we can also consider another similarity based on common
feature terms. That is, if for a set of documents, some feature terms are appeared
in each of the documents, they can be considered similar each other and can form
a cluster. Such a cluster will be meaningful in the sense that the documents in
the cluster explicitly share some feature terms. Thus, it has a quite simple and
clear basis. This kind of clusters based on common feature terms can be precisely
defined with the notion of Formal Concepts.

Let P be the set of web pages to be clustered. As has been described, each
web page document di ∈ P can be represented as a document vector

di = (tfi1, . . . , tfi|T |)T ,

where T is the set of feature terms and tfij is the frequency of the term tj ∈ T
in the document di.

Remark
In our current method, in order to capture semantic similarities among web
pages, each document vector is then projected on a new subspace obtained by
applying SVD to the term-document matrix for the corpus. After the projec-
tion, however, the document vector is represented as a new vector for which
each dimension corresponds to a compound term defined by the original feature
terms. Since it is difficult to adequately interpret the meaning of such a com-
pound term, we continue here our discussion without the projection process for
simplicity.

74 M. Haraguchi and Y. Okubo

For each document di, the set of feature terms appeared in di is denoted by
terms(di), that is,

terms(di) = {tj | tj ∈ T such that tfij ≥ 1}.

Let P ′ = {terms(d) | d ∈ P} be a set of objects and T a set of features in
Formal Concept Analysis. A formal concept FC = (P, T) such that P ⊆ P ′ and
T ⊆ T corresponds to a cluster of web pages with the common feature terms
T . Thus, by restricting our clusters to being formal concepts, we can explicitly
consider their meanings based on the intents. We call this kind of clusters Formal
Concept-based clusters (FC-based clusters in short).

The meaningfulness of FC-based cluster will be affected by both of its intent
and extent. A cluster with smaller intent might be unconvincing because the
evidence for the grouping seems to be weak, though its extent tends to be larger.
Conversely, although a cluster with larger intent might have more convincing
evidence, its extent tends to be smaller. From these observations, we formalize
FC-based clusters to be found as follows:

Constraint on Intents
An FC-based cluster to be found should satisfy a constraint on intents. As
such a constraint, we will give a threshold for evaluation value of intent.

Preference in Extents
Among the FC-based clusters satisfying the above constraint, we prefer ones
with higher evaluation values of their extents. Especially, we try to extract
clusters whose extents have Top-N evaluation values.

In the evaluation of intents and extents, one might simply take their size into
account. As another candidate, an intent T might be evaluated by the sum of
weights of the feature terms in T . An evaluation function for extents can be
defined based on their ranks assigned by an IR system, as has been described
previously.

Thus, intents and extents of formal concepts can be evaluated from several
viewpoints. We can actually define various evaluation functions for them. From
the computational point of view, however, a function which behaves monoton-
ically according to expansion of intents (extents) is strongly preferred. More
concretely speaking, we prefer an evaluation function f such that for any set S
and its superset S′, f(S) ≤ f(S′) holds. It is obvious that the above evaluation
functions based on size and based on the sum of weights behave monotonically.
The reason why such a function is preferable will become clear shortly.

6.3 Finding FC-Based Clusters by Clique Search

Top-N FC-based clusters can be also extracted by clique search.

Graph Construction: The undirected graph to be explored, G, is defined as
G = (P , E), where P is a set of web pages to be clustered and

E = {(di, dj) | di, dj ∈ P(i �= j) ∧ terms(di) ∩ terms(dj) �= φ}.

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 75

Moreover, for each page p ∈ P , the weight w(p) is assigned according to its rank,
as in the previous section. Thus, if a pair of pages share at least one feature term,
then they are connected by an edge. From the definition, any formal concept
can be extracted as an exact clique in G which satisfies closedness under the
mapping ϕ and ψ. It should be noted that a maximal clique in G is not always
a formal concept.

Search Strategy
Let γ be a threshold for evaluation values of intents. From the graph G, we try to
extract formal concepts whose intents satisfy the constraint based on γ and whose
extents have Top-N evaluation values. As long as we use monotonic evaluation
functions for intents and extents, we can find our Top-N formal concepts with
almost the same strategy adopted in our Top-N clique search. The pruning based
on tentative Top-N clusters is still available. Furthermore, we can enjoy a new
pruning rule by which we can exclude examining cliques which never become
Top-N formal concepts.

Briefly speaking, a clique (a candidate of extent) is expanded step by step in
depth-first manner. For each clique C, the set of common feature terms ϕ(C) is
computed. If the evaluation value of ϕ(C) is lower than γ, then any extension
of C can never become a formal concept satisfying the constraint on intents.
Therefore, we can immediately stop expanding C and then backtrack. If a clique
C is a formal concept satisfying the constraint on intents, then the tentative
Top-N list of formal concepts is adequately updated.

6.4 FC-Based Clusters vs. Distance-Based Clusters

We have conducted a preliminary experimentation to observe characteristics of
FC-based clusters.

A set of web pages P to be clustered has been retrieved by using Google Web
API4 with keywords “Presidential” and “Election”.The number of retrieved pages
is 968. For each page, its summary and snippet extracted by Google Web API are
actually gathered as a document. After the stemming process, we have obtained
3600-terms in the pages (documents) and extracted 947 of them as feature terms5.
Therefore, each page is represented as a 947-dimensional document vector.

From the web pages, we have extracted Top-25 distance-based clusters and
Top-10 FC-based clusters for comparison. For the former, a graph GD to be
explored has been constructed under the the similarity threshold δ = 0.7. For
the latter, according to the above graph construction process, a graph GFC

has been constructed. In each graph, a page p is assigned its weight w(p) =
|P| − rank(p)+ 1. Furthermore, each cluster (extent) is evaluated by the sum of
the page weights.

The evaluation values for an intent T , EI(T), is defined as

EI(T) =
∑
t∈T

log(|P|/df(t)),

4 http://www.google.com/apis/
5 All terms with the frequencies above 100 and below 3 have been removed.

76 M. Haraguchi and Y. Okubo

Table 3. FC-Based Clusters

Cluster ID. Extent (Page IDs) Intent

F1 194 203 205 210 Adam Archiv Back Carr39; Nation Psepho Top middot summari
F2 20 21 66 709 Administr Bush COVERAGE Coverag Elector FULL Full New

RELATED Reform Yahoo amp
F3 246 280 405 600 608 05 Lanka Sri Tamil TamilNet accur concern featur focus inform

issu new peopl provid reliabl servic
F4 176 205 444 2001 Adam Archiv Carr39; Nation Psepho provinc summari
F5 70 326 479 Ukrainian alleg controversi exampl fraud includ irregular massiv

where df(t) is the number of pages in P containing the term t. The value
log(|P|/df(t)) is called the inverted document frequency of t and reflects ability
of t for discriminating documents. The threshold γ for required intent value has
been set to 33.0.

Some of the obtained FC-based clusters are shown in Table 3. By referring to the
intent, we can easily understand the reason why the cluster formed. Thus, mean-
ings of FC-based clusters are more comprehensible than Distance-based ones.

Although various clusters have been extracted by each method, the authors
emphasize that some of them especially show the following interesting charac-
teristics.

FC-Based Cluster as Refinement of Distance-Based Cluster
As one of the top-25 Distance-based clusters, we can obtain a cluster D1 con-
sisting of the pages with their IDs, 176, 191, 193, 194, 203, 204, 205, 210 and 465.
FC-based cluster F1 is a subset of D1. Since any similar pages in the distance-
based clustering share some feature terms, they are always connected in the
FC-based graph GFC . Therefore, D1 should be a clique in GFC . However, since
D1 does not satisfy the constraint on required intent value, it cannot be ex-
tracted as a formal concept. In other word, D1 is too large and no longer has
any convincing basis (intent) of the grouping. In this sense, FC-based cluster F1
can be viewed as a meaningful refinement of the Distance-based cluster D1.

One might be able to obtain F1 even by Distance-based approach, if an ade-
quate distance (similarity) threshold δ can be provided. However, it is well-known
as a very difficult task. Although FC-based clustering also needs a threshold γ
for required intent value, γ is more intuitively understandable than δ because
the meaning of our intent value is quite clear. Thus, we can extract meaningful
clusters by FC-based approach without suffering from difficult parameter setting
required in the Distance-based approach.

FC-Based Cluster as Hidden Connection Between Distance-Based
Clusters
Addition to D1, we can obtain the 21st Distance-based cluster D2 consisting
of the pages with their IDs 187, 192 and 444. Since D1 and D2 share no page,
they seem to be quite different clusters. It is, therefore, difficult to find explicit
connection between them. On the other hand, FC-based cluster F4 shows a
certain evidence of the similarity among pages 176, 205 and 444, where both
of 176 and 205 belong to D1 and 444 to D2. Based on the existence of F4,

A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search 77

the authors expectantly consider that Distance-based clusters D1 and D2 are
potentially related to each other. Although the claim would not be certain, we
expect that such a FC-cluster would work as a trigger for discovering a hidden
interesting relationship between clusters.

7 Conclusion

In this paper, we presented a method for pinpoint clustering of web pages. Our
cluster can consist of similar higher-ranked and lower-ranked pages. Although we
are usually careless of pages with lower ranks, they can be explicitly extracted
together with significant higher-ranked pages. As the result, our clusters can
provide new valuable information for users.

In order to obtain such clusters, we first extract semantic correlations among
feature terms by applying SVD to the term-document matrix generated from a
corpus w.r.t. a specific topic. Based on the correlations of terms, we can evaluate
potential similarities among web pages to be clustered. The set of web pages is
then represented as a weighted graph G based on the similarities and their ranks.
Our clusters can be found as pseudo-cliques in G. We designed an algorithm for
finding Top-N weighted pseudo-cliques. In our experimentation, we confirmed
that a quite valuable cluster can be actually extracted according to our method.

In order to improve our method so that our clusters can be explicitly provided
with more convincing meanings, we discussed an idea with the help of Formal
Concept Analysis. By restricting our clusters (cliques) to formal concepts, we
can consider their clear conceptual meanings as their intents. In our preliminary
experimentation, we observed some characteristics of FC-based clusters. From
the observation, we expect that our extended method based on Formal Concept
Analysis would be a promising approach to finding meaningful clusters.

Needless to say, the extended method is not only for web page clustering. We
can apply the method to any case in which each object to be clustered can be
represented as a set of attributes. Applying the method to other practical data
will be an interesting work.

References

1. L. Page, S. Brin, R. Motwani and T. Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web”, http://dbpubs.stanford.edu/pub/1999-66, 1999.

2. A. Vakali, J. Pokorný and T. Dalamagas, “An Overview of Web Data Clustering
Practices”, Proceedings of the 9th International Conference on Extending Database
Technology - EDBT’04, Springer-LNCS 3268, pp. 597 - 606, 2004.

3. G. Strang, “Introduction to Linear Algebra”, 3rd Edition, Wellesley-Cambridge
Press, 2003.

4. K. Kita, K. Tsuda and M. Shishibori, “Information Retrieval Algorithms”, Ky-
oritsu Shuppan, 2002 (in Japanese).

5. E. Tomita and T. Seki, “An Efficient Branch-and-Bound Algorithm for Finding a
Maximum Clique”, Proceedings of the 4th International Conference on Discrete
Mathematics and Theoretical Computer Science - DMTCS’03, Springer-LNCS
2731, pp. 278 - 289, 2003.

78 M. Haraguchi and Y. Okubo

6. T. Fahle, “Simple and Fast: Improving a Branch-and-Bound Algorithm for Max-
imum Clique”, Proceedings of the 10th European Symposium on Algorithms -
ESA’02, Springer-LNCS 2461, pp. 485 - 498, 2002.

7. R. Carraghan and P. M. Pardalos, “An Exact Algorithm for the Maximum Clique
Problem”, Operations Research Letters, vol. 9, pp. 375 - 382, 1990.

8. B. Ganter and R. Wille, “Formal Concept Analysis: Mathematical Foundations”,
Springer, 1999.

9. K. Satoh, “A Method for Generating Data Abstraction Based on Optimal Clique
Search”, Master’s Thesis, Graduate School of Eng., Hokkaido Univ., March, 2003.
(in Japanese)

10. S. Masuda, “Analysis of Ascidian Gene Expression Data by Clique Search”, Mas-
ter’s Thesis, Graduate School of Eng., Hokkaido Univ., March, 2005. (in Japanese)

11. B. Shi, “Top-N Clique Search of Web Pages”, Master’s Thesis, Graduate School
of Eng., Hokkaido Univ., March, 2005. (in Japanese)

12. Y. Okubo and M. Haraguchi, “Creating Abstract Concepts for Classification by
Finding Top-N Maximal Weighted Cliques”, Proceedings of the 6th International
Conference on Discovery Science - DS’03, Springer-LNAI 2843, pp. 418 - 425, 2003.

13. Y. Okubo, M. Haraguchi and B. Shi, “Finding Significant Web Pages with Lower
Ranks by Pseudo-Clique Search”, Proceedings of the 8th Internatinal Conference
on Discovery Science - DS’05, Springer-LNAI 3735, pp. 345 - 352, 2005. (in press)

14. Y. Okubo and M. Haraguchi, “Finding Top-N Pseudo-Cliques in Simple Graph”,
Proceedings of the 9th World Multiconference on Systemics, Cybernetics and In-
formatics - WMSCI’05, Vol. III, pp. 215 - 220, 2005.

Specific-Purpose Web Searches on the Basis of
Structure and Contents

Mineichi Kudo and Atsuyoshi Nakamura

Graduate School of Information Science and Technology, Hokkaido University,
Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan

{mine, atsu}@main.ist.hokudai.ac.jp

Abstract. We introduce methods for two specific-purpose Web
searches. One is a search for Web communities related to given key-
words, and the other is a search for texts having a certain relation to
given keywords. Our methods are based on both structure and contents
of WWW. Our method of Web community search uses global structure
of WWW to discover communities, and uses content information to label
found communities, where global structure means Web graph composed
of Web pages and hyperlinks between them. On the other hand, our
method of related text search uses local structure of WWW to extract
candidate texts, and uses content information to filter out wrongly ex-
tracted ones, where local structure means DOM-tree structure of each
page. We report the latest results on these Web search methods.

1 Introduction

Motivation. The World Wide Web is now a rich resource for obtaining valuable
information. The problem to be solved is how to choose important information
only for a specific user or a specific demand. One solution for this problem is to
make a search engine for a specific purpose. By using a specific-purpose search
engine, we can enjoy high-performance search results for the purpose though
available cases of the engine are limited.

Usefulness of a specific-purpose search engine is determined by how popular
and important the purpose is.

One important purpose is knowledge discovery, or data mining. In this pur-
pose, search results are not mere a set of pages satisfying a certain conditions
but higher-level knowledge. One such knowledge is that members in a certain
set of sites share the same topic, which indicates that a kind of community is
composed of corresponding organizations or persons. One subject of this paper is
automatic discovery and labeling of Web communities related to given keywords.

Another important purpose is to gather information supporting user’s de-
cisions. Much of such information appears in the form of texts that describe
people’s experiences, opinions and feelings. The other subject of this paper is
automatic extraction of texts having a specific relation with given keywords. Ex-
tracting people’s review texts for a certain kind of restaurants, books and music
CDs is an example of such specific relations.

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 79–96, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

80 M. Kudo and A. Nakamura

Key Concepts. Since most informations important for human being are writ-
ten in natural language, we cannot expect high-performance search results with-
out using content information of Web pages. Several sophisticated text search
techniques have been already developed in the area of information retrieval [3],
and we can obtain search results of some performance level by applying such
techniques to the Web search. Different from a mere set of plain texts, Web
has explicit structures both globally and locally. Here, the global structure is a
graph structure in which each Web page is regarded as a vertex and each hy-
perlink between Web pages is regarded as an edge. The local structure is the
DOM(Document Object Model)-tree structure in a page. Performance of Web
search depends on how effectively these structural information is used in addition
to content information.

In order to automatically discover and label Web communities, our approach
makes use of information of the global structure. A densely connected subgraph
of Web graph is a set of pages that might be created by people or organizations
having an interest in the same topic. Such sets of pages are called Web com-
munities in a narrow sense, and many researchers are studying how to discover
Web communities [5, 7, 13]. In our approach, focusing on graph structure, Web
communities that strictly satisfy the conditions defined by us are extracted first.
Then, focusing on content similarity of member pages in each extracted Web
community, they are labeled using frequency mining techniques [1], namely, la-
beled by frequent index-term sets.

In order to automatically extract texts having a specific relation with given
keywords, our approach uses information of the local structure. Several methods
of information extraction using DOM-tree structure have been already developed
[16, 4, 10, 18]. However, those previous methods are only applicable to extraction
from specific sites. In our approach, content information is also used in addition
to information of DOM-tree structure, which enable texts related with given
keywords to be extracted from search results by general search engine. First,
candidate texts are selected using DOM-tree patterns, which are extracted from
training data by frequency mining technique. Then, inappropriate texts are fil-
tered out by text classifier, which is also created from training data.

Main Results. On the subject of automatic discovery and labeling Web com-
munities, we recently proposed stricter community definition [11], which reduces
boundary ambiguity of communities defined by Flake, Lawrence and Giles [5].
Though finding all communities of our definition is known to be a computation-
ally hard problem [6, 17], we also proposed efficient algorithm with constructing
a Gomory-Hu tree that possibly finds many communities. Actually, in our pre-
vious experiments, more than 100 communities were found for a graph of about
3000 vertices [11]. However, many similar communities containing almost all ver-
tices in the same connected component were included in the set of those found
communities. In many cases, intersection of those communities also satisfies our
community definition, and partitioning by all communities does not change even
if all those communities are replaced with one intersection community. Even
in the case that intersection of communities does not satisfy our community

Specific-Purpose Web Searches on the Basis of Structure and Contents 81

definition, the maximum community included in the intersection can be found
[11], and such maximum community may make the partition finer. In this paper,
we propose a modified method using above replacement and addition of com-
munities to obtain a community set composed of more essentially-distinct ones.
We also propose a labeling method of found communities by frequent index-term
[3] sets, which can be obtained by an algorithm [21] for frequent item sets. Ac-
cording to our preliminary experiments, our modified method replaced most of
uninformative large communities with several smaller ones and added more than
100 communities that make the partitioning finer. As for labeling by frequent
index-term sets, some appropriate keywords such as page-owner’s company’s or
organization’s names and summary keywords such as “racing” and “game” were
included in created index term sets. Labeling by not mere index-term list but
a list of index-term sets sometimes gave us hints on the contexts in which the
words were used.

On the subject of automatic extraction of texts having a specific relation
with given keywords, we developed a method using structure matching and text
classification [9, 8]. Patterns we use in structure matching consist of a root node
and two paths leading to leaf nodes, a keyword node and a target node. Structure
matching to a pattern set is conducted for DOM-trees converted from retrieved
HTML pages. In this matching, a text node containing given keywords is matched
to a keyword node of a pattern, and nodes matching to its target node are
extracted, and all the texts included in the subtrees rooted by the extracted
nodes are candidate texts. Matching used here is elastic like the ones used in
[22, 18], namely, only subsequence of nodes in a path has to be matched to
a sequence of nodes in a path of a pattern. This flexibility allows many texts
having target relation with given keywords to be extracted using small number of
patterns. On the other hand, many non-target texts are also extracted, but those
are filtered out by text classification. Patterns used in this structure matching
are learned from training data using algorithm [2] for frequent sequence mining.
The text classifier is also learned automatically using given positive instances and
generated negative instances, which are texts wrongly extracted from training
data using learned patterns. According to our experiment of extracting people’s
reviews for given restaurants, which are categorized into Ramen, Sushi, curry in
Sapporo and Sushi in New York, precision of our method is at least 70% and its
recall is at least 40% for all the categories except Sushi in New York.

Relation to the topic “Federation over the Web”. One subject of this
paper is automatic discovery and labeling of Web communities. For knowledge
federation, we first have to select pieces of knowledge to federate. An extracted
Web community may be used as a set of such pieces to federate. Automatic
extraction of texts having a specific relation with given keywords, for example,
extracting people’s reviews for a given restaurant from search results of a gen-
eral Web search engine, is the other subject of this paper. Restaurants nearby
depend on people’s current place, and we can obtain various information by
federating Web pages related to those nearby restaurants. Extracted reviews of
those restaurants are a kind of such information.

82 M. Kudo and A. Nakamura

Paper Organization. This paper is organized as follows. Section 2 is devoted
to our method of automatic discovery and labeling of Web communities. In
that section, after our previous method is described, we propose a modified
method and reports the results of experiments for examining effectiveness of
the modification. Section 3 is devoted to our method of automatic extraction
of texts having a specific relation with given keywords. We mention our text
extraction method using patterns and a text classifier, and our learning method
of the patterns and the classifier. Recent experimental results are also shown in
this section. Related work is described in Section 4, and this paper is concluded
by Section 5.

2 Automatic Discovery and Labeling of Web
Communities

In this section, we deal with the problem of automatic discovery and labeling of
Web communities.

We divide the problem into two subproblems, community discovery and la-
beling. In our method, Web communities are discovered first by using structural
information, and then each community is labeled automatically using content
information.

2.1 Community Discovery Using Structural Information

As a method of community discovery, we use a method of finding communities
that we have developed recently [11]. We defined communities by stricter condi-
tions than Flake, Lawrence and Giles did, and proposed a method finding such
communities efficiently by constructing a Gomory-Hu tree. In the followings,
we first mention our community definition and community-finding method we
proposed previously, then propose a modified method.

Base Method. A Web graph we consider here is an undirected graph G =
(V, E) that is composed of a vertex set V representing the set of Web pages,
and an edge set E representing the set of links connecting between two distinct
pages. For a vertex u and a vertex set C(�� u), let #(u, C) denote the number of
edges between u and any v ∈ C. The community definition we proposed in [11]
is as follows.

Definition 1. A community is a vertex subset C ⊂ V that satisfies the following
two conditions.

1. #(u, C − {u}) > #(u, V − C) for all u ∈ C.
2. #(u, C) ≤ #(u, V − C − {u}) for all u ∈ V − C.

The first condition in Definition 1 says that each member vertex has more
edges connecting to member vertices than it does to non-member vertices. Note
that the original definition by Flake, Lawrence and Giles is the same as this

Specific-Purpose Web Searches on the Basis of Structure and Contents 83

C1C2

C3 C4 C5

u v

s

t

Fig. 1. Example of Communities C1, C2, ..., C5

first condition except it allows the case with #(u, C − {u}) = #(u, V − C). The
second condition says that each non-member vertex has at least as many edges
connecting to non-member vertices as it does to member vertices. One merit of
our definition is reduction of community-boundary ambiguity. For example, sets
C1, C2, ..., C5 in Fig. 1 are all communities by the definition of Flake, Lawrence
and Giles, but those are essentially the same densely connected part. In this
case, only C3 satisfies our community definition.

Finding communities defined by Definition 1 looks computationally difficult,
because the problem of deciding whether a community exists or not in a given
weighted graph is known to be NP-complete1 [6]. Even for non-weighted graphs,
graphs in which weights for all edges are 1, NP-completeness was also proved
for the problem of deciding whether a community that includes s and excludes
t for given vertices s and t exists or not [17].

However, for given vertices s and t, the smallest set C for which (C, V −C) is
a minimum cut [19] dividing s and t satisfies our community conditions except
for vertices s and t [11]. Thus, it is very easy to decide whether such a set C is
community or not. By using Gomory-Hu tree construction method, n − 1 such
minimum cuts can be found efficiently, where n is the number of vertices. By
checking our community condition for two vertices of each minimum cut, many
communities are possibly obtained. Actually, more than 100 communities were
found from graphs with about 3000 vertices in our previous experiments.

Modified Method. Our previous method has the following two problems.
First, minimum cuts represented by a Gomory-Hu tree are ones that divide two
distinct vertices. So, community C7 in Fig. 2, which divides vertex s and vertex-
set {t1, t2}, cannot be found by the method. Community C14 in Fig. 2 cannot be
found by the same reason. Furthermore, three communities C11, C12 and C13 are
found by th method, but those communities are essentially the same community
having C4 as its core. This means that the problem of boundary ambiguity still
exists, which is the second problem.

To cope with these problems, we consider the following two operations for any
two communities C1 and C2 in set C of found communities such that C1 ∩ C2,
C1 \ C2 and C2 \ C1 are all non-empty.

1 In this paper, communities are defined only for non-weighted graphs, but it is easy
to extend our community definition for weighted graphs. See [11].

84 M. Kudo and A. Nakamura

C6 C7 C8

C9 C10

st1 t2
C11

C12

C13

C14

Fig. 2. Problem cases of our previous method

Operation 1. Add C1 ∩ C2 if C1 ∩ C2 is a community, and the partitioning
by all communities, a set of connected components cut by boundaries of
communities, is not changed by adding C1 ∩ C2 and removing at least one
of two communities C1 and C2. Remove all such Ci for i = 1, 2.

Operation 2. Add the maximum community contained in C1 ∩ C2 if C1 ∩ C2
is not a community.

Note that, for any pair of communities, there is the maximum community
contained in their intersection by Proposition 4(2) in [11]. Community C7 in
Fig. 2 is added, and two communities C9 and C10 are removed by Operation 1.
Similarly, C14 is added, and three communities C11, C12 and C13 are removed.
Thus, the two problems above are solved in the cases shown in Fig. 2.

Note that the number of communities increases by Operation 2 but does not
increase or even decreases by Operation 1. Applying these procedure for all
pair of found communities has high computational cost if many communities
are found. Thus, we first apply Operation 1 to all pairs of found communities
including newly found ones by this operation to reduce the number of communi-
ties. Then, apply Operation 2 to all pairs of the communities. After that, repeat
these two procedures in this order until no change occurs by the procedures.

2.2 Labeling Using Content Information

As to labeling found communities, we apply frequent item set mining method
to this problem. A frequent item set is a set that is included in more than σ
percentage of transactions for a given transaction database, where σ is a given
minimum support value. By regarding each Web page as a transaction that
composed of index terms [3] appeared in the page, frequent index-term set can
be obtained by efficient algorithm for frequent item sets [21]. Then, a community
can be labeled by maximal frequent index-term sets.

When the minimum support σ is fixed, no frequent index-term set exists for
some communities, which is not appropriate for labeling. Therefore, we propose
the labeling method that always uses the most frequent N index-terms in a
community, where frequency is counted by the number of pages contains the
index-term. Let the number of pages in a community be m and let the frequency

Specific-Purpose Web Searches on the Basis of Structure and Contents 85

of the Nth frequent index-term be n. Then, σ is set to n/m. In this case, all the
frequent index-term sets must be subsets of the most frequent N index-terms.
So, calculation has to be done only for index-term sets restricted to the most
frequent N index-terms.

2.3 Preliminary Experiment

For keyword “jaguar”, we construct a subgraph by using the Subgraph procedure
proposed by Kleinberg [12], which retrieves t pages by using a search engine and
adds all pages that are linked from or linking to at least one of them, though
the number of pages linking to is restricted within d pages. In our experiment,
we used search engine Google (www.google.co.jp), and set t and d to 845 and
100, respectively2. Note that we removed all intrinsic links [12], namely, links to
pages of the same domain, as Kleinberg did.

We judged that two domains d1 and d2 are the same as follows. Let com-
ponents of a domain mean strings separated by periods ‘.’. Assume that the
number of components for d1 is at most that for d2. Then,

1. if d1 is composed of more than two components, d1 and d2 are judged as
the same if and only if the d1’s suffix beginning with the second component
is a d2’s suffix. For example, ‘ccc.bbb.aaa’ and ‘ddd.bbb.aaa’ are the same
domain, and ‘eee.ccc.bbb.aaa’ and ‘fff.ddd.bbb.aaa’ are different domains.

2. If d1 is composed of at most two components, d1 and d2 are judged as
the same if and only if d1 is a suffix of d2. For example, ‘bbb.aaa.’ and
‘ccc.bbb.aaa’ are the same domain but ‘bbb.aaa’ and ‘eee.ddd.aaa’ are dif-
ferent domains.

The summary of our data is shown in Table 1. Note that the number of
connected components is counted by excluding isolated vertices.

First, we examined effectiveness of our modified method for finding commu-
nities. The result is shown in Table 2. The number of found communities are
reduced from 478 to 160 using Operation 1 only. This means that, for many
pairs {C1, C2} of communities found by our previous method, two communi-
ties C1 and C2 can be replaced with one community C1 ∩ C2 without changing
the partitioning by all communities. Most of such deleted communities are large
ones that contain almost all vertices of one connected component, and those
are not interesting. Using Operation 1 repeatedly, many such large communities
are replaced with a few smaller communities that are intersections of subsets
of those communities. (See Fig. 3.) Thus, the average size of communities are
dramatically decreased by Operation 1. Using Operation 2 in addition to Oper-
ation 1, new communities that change the partitioning by all communities are
found. This increases the number of communities from 160 to 307 though this
also increases the average size of communities. Our modified method seems ef-
fective from the fact that new communities are found and many unimportant
communities are removed.
2 Precisely speaking, 845 is the number of pages retrieved by Google with keyword

“jaguar” using the mode of excluding similar pages.

86 M. Kudo and A. Nakamura

Table 1. Data summary

Number of vertices 11888
Number of edges 76922
Number of isolated vertices 2740
Number of connected components 135

Table 2. Found communities

Method Previous +Operation 1 +Operations 1 and 2
Number of communities 478 160 307
Average community size 5770 551 2697
Standard deviation of community size 6934 2017 4002

 0

 50

 100

 150

 200

 250

 300

 350

8000-
8999

7000-
7999

6000-
6999

5000-
5999

4000-
4999

3000-
3999

2000-
2999

1000-
1999

0-
999

N
um

be
r

of
 c

om
m

un
iti

es

Community size

Privious
+Operation 1

+Operations 1 and 2

Fig. 3. Size distribution of found communities

Next, we examined effectiveness of our labeling method. From the 307 com-
munities found by our modified method, we selected communities that are not
supersets of other communities containing at least 15 pages. There were 14 such
communities of English pages, which are listed in Table 3. In the table, commu-
nities are sorted by the number of member pages that contain word “jaguar”. We
applied our labeling method to these 14 communities. As inputs to our method,
only pages containing “jaguar” are used because we want to analyze communi-
ties in context of “jaguar”. Index terms we used in our experiment are standard
forms of nouns, verbs and adjectives though the following two types of words
are excluded: (1) the most frequent 500 words [15], (2) popular words used
in footer of Web pages (“copyright”, “right”, “reserve”, “privacy”, “policy”,
“site”, “map”, “contact”, “web”, “search”, “links”, “link”, “home” and “page”).
In the experiment, we used the most frequent 4 index-terms except “jaguar” for
labeling.

Now, let us see the labels generated by our labeling method, which are shown
for each community in Table 3. First, let check whether selected index-term sets
contain keywords appropriate for each community. For more than half of com-
munities, those contain page-owner’s company’s or organization’s names: “Jag-
lovers”(1), “Justia”(2), “Wikipedia”(3), “HighBeam” “ research”(6), “Road-
fly”(9), “eBay”(11), “PRIMEDIA”(12) and “IGN”(13), where the number n in
the parenthesis means that the word appears in the label of the nth community.

Specific-Purpose Web Searches on the Basis of Structure and Contents 87

Table 3. Found communities that do not contain any other communities with size
≥ 15 (A: Number of pages containing “jaguar”, B: Number of pages, C: Number of distinct sites)

88 M. Kudo and A. Nakamura

These keywords are considered to be one of appropriate keywords though com-
munities labeled index-term sets containing such keywords are possibly com-
posed of one company’s sites. Next, let see whether keywords that summarize
each community are selected. For some communities, their labels contain such
important keywords: “forum”(1,9), “recall”(2), “racing”(5), “Audio” “repair”
(7), “price”(11,12), “vehicle”(12) and “game”(13). These keywords help up know
what communities they are. Proper nouns like product names are sometimes in-
cluded, and those words also help us guess what communities they are.

As sets of index-terms, sets of words appeared in the fixed part of pages in
the same owner’s sites were selected. For example, the footer of Wikipedia’s
pages always contains a note “Gnu Free Documentation License” which caused
the word set {“license”,“free”,“gnu”} to be generated. One merit of labeling by
frequent sets is that you can guess in what context the set of words are used in
many cases. However, fixed headers or footers do not always represent contents of
pages appropriately. The fact that words appeared in such fixed part are frequent
for a community, also indicates that the community is mainly composed of the
same owner’s sites.

Interesting communities are considered to be ones composed of many different
owner’s pages. To investigate that such interesting communities are extracted,
we calculated the number of distinct domains for each community. For a given
set D of domains, the number of distinct domains is the minimum size of its
subset S such that for any d ∈ D there exists s ∈ S which is the same with
d. Note that the definition of the same domains here is before mentioned one.
The number of distinct communities are shown in the parenthesis of the first
column of Table 3. In context of “jaguar”, interesting communities are the 5th
and 8th communities because most member pages are distinct and word “jaguar”
appears in more than half member pages. The 5th community is a community
of jaguar car racing, and the 8th community is a community composed of major
manufacturer home pages containing the jaguar home page and hub pages linking
to them.

3 Automatic Extraction of Texts Having a Specific
Relation with Given Keywords

Town information magazines are useful for finding restaurants suited for your
taste. However, depending too much on such information is not recommended
because the restaurants might pay some money for the articles and the reporter’s
taste might be different from your taste. Your decision should be made based on
restaurant reviews by several people, which are obtainable through the WWW.

We are now developing a search engine for extracting restaurant reviews from
the WWW. For a given restaurant name, the engine collects information of
the restaurant using a conventional search engine, and displays its review texts
only by extracting from collected Web pages. The problem is how to extract
only review texts of a given restaurant name from collected Web pages. We
assume that every page contains some information of a target restaurant, which

Specific-Purpose Web Searches on the Basis of Structure and Contents 89

<html>

<head><title> Hokudai Sushi: the best Sushi restaurant </title></head>

<body bgcolor="yellow">

<big> Hokudai Sushi </big>

<small>tel: 000-000-0000, fax: 111-111-1111</small>

The best Sushi restaurant I’ve ever been to.

</body>

</html>

html

title

#text
Hokudai Sushi:
 the best Sushi bar

head body

strong

#text

Hokudai Sushi

br

#text

The best Sushi bar
I’ve ever been to.

big fontbr

#text

small

tel: 000-000-0000
fax: 111-111-1111

br

Fig. 4. Example of an HTML document and its DOM-tree representation

is possible if we give its telephone number or address to a conventional search
engine in addition to its name.

The difficulty of the above problem exists in the following points.

1. There are pages which do not contain reviews.
2. Some pages contain reviews of more than one restaurants.
3. Various information other than reviews might be contained.
4. Various page layouts exist.

Here, target reputation texts are ones structurally separated from other texts.
So, reputations that are appeared in BBS (Bulletin Board System) conversation
or someone’s diary are not targeted.

Our search engine for extracting restaurant reviews uses both structural and
content information. Structural information is used to narrow candidates by
structural relation between a reputation candidate text and a text containing
a given restaurant name. Content information is used to judge whether each
candidate is a reputation or not by classifying texts into two categories, review
texts and other texts.

3.1 Structure-Based Filtering Phase

Structure we consider here is a (simplified) DOM-tree, a representation of an
HTML document in document object model. A simplified DOM-tree is an ordered
tree in which each node has two attributes, tag and text. A value of the tag
attribute is ’#text’ for text nodes and a HTML tag otherwise. A value of the
text attribute is a text for text nodes and null otherwise. Fig. 4 is an example of
an HTML document and its DOM-tree representation. In our problem setting,
text “The best Sushi restaurant I’ve ever been to.” must be extracted from this
example page when restaurant name ‘Hokudai Sushi’ is given.

Candidates are narrowed to texts below the nodes matched to certain struc-
tural patterns, which are learned from training data. A pattern (P, r) is com-

90 M. Kudo and A. Nakamura

body

strong

#text

#text

K
C

P
P

P

html

title

#text
Hokudai Sushi:
 the best Sushi bar

head body

strong

#text

Hokudai Sushi

br

#text

The best Sushi bar
I’ve ever been to.

big fontbr

#text

small

tel: 000-000-0000
fax: 111-111-1111

br

T
0

1

2

3

4

5

6

7

8 9

10

11 12 13

14

RP

Fig. 5. Example of a pattern tree P . The structural relation of the node 14 to keyword
“Hokudai Sushi” matches the pattern (P, r) when r ≥ 7. In this case, that of the node
10 to the keyword also matches (P, r).

posed of a pattern tree P and integer r. A pattern tree P is a special DOM-tree
without the text attribute. It is composed of a root node RP , two leaf nodes
KP and CP , and paths from the root node to leaf nodes. An example pattern
tree P is shown in Fig. 5. A node CT in a DOM-tree T is said to be matched
to a pattern (P, r) for a given restaurant name W if P is embeddable in T by
one-to-one mapping φ that satisfies the following conditions. Note that node ids
are their positions in the preorder traversal.

1. Target matching: CT = φ(CP)
2. Keyword matching: φ(KP) is a text node of which text contains W .
3. LCA matching: The least common ancestor of nodes φ(KP) and φ(CP) is

φ(RP).
4. Label preserving: The tag attribute value of NP coincides with that of

φ(NP) for all nodes NP in P .
5. Ancestor-descendant relation preserving: If node NP,1 is a child of

node NP,2 in P , node φ(NP,1) is a descendant of node φ(NP,2) in T .
6. Sibling relation preserving: The left-right relation of KP and CP is pre-

served by φ, that is, the id of φ(KP) is smaller than the id of φ(CP).
7. Acceptable distance: Absolute difference between ids of φ(KP) and φ(CP)

is at most r.

An example embedding mapping φ is shown in Fig. 4. Note that our pattern
matching allows elastic matching, which makes a pattern more general. Candi-
dates narrowed by pattern matching are all nodes that are matched to one of
pattern (P, r) in a pattern set P . Elastic matching enable us to extract reputation
texts embedded in various structures by a small number of patterns.

3.2 Content-Based Filtering Phase

In order to judge whether each candidate is a reputation or not, we use a text
classifier of which input is an index term vector [3] that is created from all the

Specific-Purpose Web Searches on the Basis of Structure and Contents 91

texts of the descendant text nodes of the candidate node. An index term vector is
a collection of weights associated with each representative keyword called index
term. Its weights can be binary, normalized term frequencies or tf-idfs. The text
classifier can be any one that inputs a real valued vector.

If all the candidate nodes in a Web page are judged not to be reputations,
no text is output. If more than one candidate nodes in a Web page are judged
to be reputations, a node φ(CP) with the smallest id difference from φ(KP) is
selected, and all the texts of its descendant nodes are output.

3.3 Learning Patterns and a Text Classifier

Our method explained in the previous subsection needs a pattern set P and a
text classifier, which can be learned from training data. In this subsection, we
mention how to learn them.

A training data set D is a set of triples (W, T, N∗
T), where W is a restaurant

name, T is a DOM-tree that has text nodes containing W , and N∗
T is the least

common ancestor of all the text nodes which contain review texts for W . N∗
T is

null when there is no such text node in T . To create each triple (W, T, N∗
T), we

have to specify where the review texts for W are written. However, this task is
easy because we do not have to specify the place of W and we may neglect all
other review texts for other restaurants.

For each training data (W, T, N∗
T) with N∗

T �=null, and for the last text node
KT that contains W and appears before N∗

T , the minimum connected subgraph
S containing KT and N∗

T is extracted from T .
For example, when W =‘Hokudai Sushi’, T is the tree shown in Fig. 4 and

N∗
T is node 14 in T , tree S1 shown in Fig. 6 is extracted from T . Let S denote a

S1 "body","#text"

body

strong

#text

#text

big font

4

5

6

7

13

14

Hokudai Sushi

The best Sushi bar
I’ve ever been to.

Fig. 6. Minimum connected subgraphs S1 containing nodes 7 and 14 extracted from
tree T shown in Fig. 5

set of such trees extracted from trees in training data. S is partitioned into {El,t}
by values l and t of tag attribute for a root node and a target node, respectively.
For example, S1 in Fig. 4 belongs to partition E“body”,”#text”. Members of a
pattern set P are created by extracting maximal common patterns (P, r) from
each partition El,t. Pattern (P, r) is said to be a maximal common pattern of
partition El,t when the following conditions are satisfied.

92 M. Kudo and A. Nakamura

4

5

6

7

10

body

strong

#text

#text

big font

11

S1
5

7

8

9

18

body

strong

#text

#text

trfont
25

S2

table

td
28

29

4

45

body

strong

#text

#text

tr
46

3

table

td
47

S

small

font

25

30

31

32

33

body

strong

#text

#text

P

Fig. 7. A maximal common pattern of {S1, S2, S3} is (P, 20)

1. Tree P is a maximal tree that is embeddable in all trees belonging to El,t.
2. Integer r is the maximum difference between two leaf node ids of trees in

El,t.

For example, in Fig. 7, (P, 20) is a maximal common pattern of {S1, S2, S3}.
A maximal common embeddable tree can be obtained by using TreeMiner

algorithm [22] with minimum support 1.0. However, the computational time
of the algorithm is exponential with respect to the size of a found maximal
common tree. We can reduce the computational time by dividing the problem
into two problems that finds a maximal common sequence of tag sequences from
a root node to one leaf node, which can be obtained by AprioriAll [2]. The
computational time of AprioriAll is still exponential with respect to the size of
a found maximal common sequence, but its size is smaller than the size of a
maximal common tree.

For learning a text classifier, all we have to do is generation of its training
data set. Then, we can create one of conventional text classifiers by using any
existing learning method for the classifier. One problem is that a training data
set for a text classifier cannot be obtained directly from a given training set D.
For data (W, T, N∗

T) with N∗
T �=null, a positive training text is a concatenated

text of all the texts contained in the subtree rooted by the target node N∗
T .

However, it is not trivial how to extract negative training texts.
In our method, negative training texts are generated from each training data

(W, T, N∗
T) using pattern set P that have already been learned, namely, a nega-

tive training text is a concatenated text of all the texts contained in the subtree
rooted by non-target node CT that is matched to one pattern in P for keyword
W . In order to prevent reputations of other restaurants from being included
in negative training texts, node NT with a larger id than the id of N∗

T is not
considered as above CT .

3.4 Experiments

We conducted experiments for performance evaluation of our methods using
real data. We created four data sets, Ramen (lamian, Chinese noodles in Soup),

Specific-Purpose Web Searches on the Basis of Structure and Contents 93

Sushi, curry, in Sapporo and Sushi in New York. All the data sets but Sushi
in New York are composed of Web pages written in Japanese. Sushi in New
York is composed of Web pages written in English. Each data set is composed of
Web pages collected by Google using restaurant name and its telephone number
as keywords. For each data set, we collected pages for 10 restaurants that are
ranked top in lists provided by some information sources3 and that also have at
least 15 retrieved Web pages. For each page retrieved by keyword W , we created
a training data (W, T, N∗

T) by specifying the position of the reputation texts for
W and using a HTML parser.

Table 4. Experimental data

Category Ramen Sushi Curry Sushi (NY)
#HTML 301 285 414 331
#REVIEW 189 127 265 125

In Table 4, the number of HTML pages and the number of review texts for
a target restaurant in our data sets are shown. For each data set, we conducted
cross validation by using data of 9 restaurants as training data and data of rest
one restaurant as test data.

Table 5. Extraction performance

Category Ramen Sushi Curry Sushi (NY)
Precision (%) 73 76 70 82
Recall (%) 52 41 43 18

Extraction performance for four data sets are shown in Table 5. Note that,
in our calculation of precision and recall, extracted texts are regarded as correct
ones even if those are only parts of target texts. Precision for the four data sets
is ranged from 70 ∼ 82%, which looks low a little. For practical use, it should
be at least 90%. So, some improvements are necessary. Recall is ranged from
41 ∼ 52% except Sushi (NY). These values also look low a little because recall
should be more than 50% for miner restaurants to obtain enough information.
As for Sushi (NY), it suffers very low recall (18%). This is because words used
in reviews depend on restaurant categories, and variance of words used in a page
is large for Sushi (NY) compared to other categories.

Example of extracted texts for a Sushi restaurant in New York is shown in
Table 6. In this example, only one text, which is a review for another restaurant,
was wrongly extracted.

3 [Ramen]: Hokkaido Walker 2002 No.3, [Sushi, curry]: Yellow Page’s Palette
Search (www.ypp.co.jp/search/), [Sushi (NY)]: New York metro.com
(www.newyorkmetro.com/restaurants/)

94 M. Kudo and A. Nakamura

Table 6. Extracted texts for a Sushi restaurant in New York (©:Correctly extracted,
×:Wrongly extracted, ******: Restaurant names)

© A dependable choice for fresh, inexpensive Japanese food with typical sushi and sashimi options

such as the hamachi yellowtail. The menu offers some surprises: for example, a not-so-typical sauted

scallops with jalapeno sauce. The shitake string bean sesame is a safe bet. Recommended Dishes:

Sauted Scallops with Jalapeno Sauce, $9.50; Shitake String Bean Sesame, $6.75

© I did the Omakase and let the chef decide...with a budget of $60. I ordered (outside of the $60)

the Sushi Pizza, which was fantastic. As for the sushi and sashimi, it was good, but not great. I’ve

had better quality and creativity at ****** and ******. I only received about 8 pieces, which left

me very hungry. Definitely not worth $60 plus the cost of the sushi pizza and beverages.

© The New York Times named ****** a top pick for Sushi, calling it an ”affordable neighborhood

place several cuts above the ordinary”. The owner brings his innovative style to this new location,

which has been open for the better part of two years. ****** is proud to offer both authentic and

modern dishes...

× Where else can you find modestly-priced, first-rate Thai, Vietnamese, Malaysian & Japanese

(sushi bar) under one roof? You love the exotic Asian decor including the unique tables. This place

has it all: variety, great prices, handsome surroundings, delicious food, and attentive service! L &

D!. All cards. 242 W. 56th St. (Bdway-8th Ave.), 212-265-8588...

4 Related Work

There are mainly two approaches to find Web communities, densely connected
subgraphs of Web graph. One is an approach of finding cores of communities,
the most densely connected parts inside them, and the other is an approach of
finding boundaries of communities, sparse connections between their insides and
outsides. Method of finding complete bipartite subgraphs proposed by Kumar et
al. [13] belongs to the former approach. Methods belonging to the latter approach
are a method based on edge betweenness proposed by Girvan and Newman [7],
and a method using maximum flow algorithm proposed by Flake, Lawrence, Giles
[5]. Our method also belongs to the latter one, especially, based on the method
using maximum flow algorithm. One merit of boundary approach is clarity of
page’s membership to found communities. Besides, meaning of boundaries is also
clear for the method using maximum flow algorithm.

As for extraction of texts related to given keywords, there are also mainly
two approaches, wrapper induction approach and natural language processing
approach. The former approach uses only structure of HTML documents such
as a DOM-tree [16, 4, 10, 18] and a mere character or token sequence [14, 10].
The latter approach uses information of natural language such as structure of
sentences and language expressions useful to extract target information [20].
One shortcoming of wrapper induction approach is that it is basically applica-
ble only to pages in a specific site. The natural language processing approach
is mainly used to extract texts sentence by sentence, and sometimes needs to
manually make language expressions used for extraction. In addition to wrapper
induction approach, our method uses text information, but only information of

Specific-Purpose Web Searches on the Basis of Structure and Contents 95

what words appear, which is a low-level information in the area of natural lan-
guage processing. Extraction unit of our method is not a sentence but a block
of texts, which is also different from the method proposed by Tateishi, Ishiguro
and Fukushima [20].

5 Concluding Remarks

In this paper, we introduced our methods for two specific-purpose Web searches,
search for Web communities related to given keywords and search for texts having
a specific relation with given keywords. The key of high performance Web search
methods is how efficiently structural information is used in addition to content
information. Our methods use both informations but separately. In Web com-
munity search, structural information is used to find communities and content
information is used to label them. In related text search, structural information
is used to find candidates and content information is used to filter out non-target
texts. However, to achieve further performance improvements, hybrid methods
that use both informations simultaneously should be developed, which is our
future work.

Acknowledgments

We would like to thank Yoji Shidara and Hiroyuki Hasegawa for helping us to
conduct experiments.

References

1. R. Agrawal and R. Srikant. First algorithms for mining association rules. In Proc.
20th Int’l Conf. on VLDB, pages 487–499, 1994.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 11th Int’l Conf.
on Data Eng., pages 3–14, 1995.

3. R. Baeza-Yates and B. Ribriro-Neto. Modern Information Retrieval. ACM Press,
New York, NY, 1999.

4. W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible learning system for wrapping
tables and lists in html documents. In Proc. of 11th Int’l World Wide Web Conf.,
pages 232–241, 2002.

5. G. Flake, S. Lawrence, and C.Giles. Efficient identification of web communities.
In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 150–160, 2000.

6. G. Flake, R. Tarjan, and K. Tsioutsiouliklis. Graph clustering and mining cut
trees. Internet Mathematics, 1(3):355–378, 2004.

7. M. Girvan and M. Newman. Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA, 99:7821–7826, 2002.

8. H. Hasagawa, M. Kudo, and A. Nakamura. Empirical study on usefulness of al-
gorithm sacwrapper for reputation extraction from the www. In Proceedings of
the 9th International Conference on Knowledge-Based & Intelligent Information &
Engineering Systems, 2005. To appear.

96 M. Kudo and A. Nakamura

9. H. Hasagawa, M. Kudo, and A. Nakamura. Reputation extraction using
both structural and content information. Technical Report TCS-TR-A-05-
2, Division of Computer Science, Hokkaido university, 2005. http://www-
alg.ist.hokudai.ac.jp/tra.html.

10. D. Ikeda, Y. Yamada, and S. Hirokawa. Expressive power of tree and string based
wrappers. In Proc. of IJCAI-03 Workshop on Information Integration on the Web
(IIWeb-03), pages 21–26, 2003.

11. H. Ino, M. Kudo, and A. Nakamura. Partitioning of web graphs by community
topology. In Proceedings of WWW2005, pages 661–669, 2005.

12. J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46(5):604–632, 1999.

13. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for
emerging cyber-communities. Computer Networks, 31(11-16):1481–1493, 1999.

14. N. Kushmerick. Wrapper induction:efficiency and expressiveness. Artificial Intel-
ligence, 118:15–68, 2000.

15. R. Mitton. A description of a computer-usable dictionary file based on the oxford
advanced learner’s dictionary of current english, June 1992. Downloaded from
ftp://sable.ox.ac.uk/pub/ota/public/dicts/710/.

16. Y. Murakami, H. Sakamoto, H. Arimura, and S. Arikawa. Extracting text data from
html documents. The Information Processing Society of Japan (IPSJ) Transactions
on Mathematical Modeling and its Applications (TOM), 42(SIG 14(TOM 5)):39–
49, 2001. In Japanese.

17. A. Nakamura, T. Shigezumi, and M. Yamamoto. On nk-community problem. In
Proceedings of the Winter LA Symposium, pages 12.1–12.8, 2005.

18. T. Sugibuchi and Y. Tanaka. Interactive web-wrapper construction for extracting
relational information from web documents. In Proceedings of WWW2005, pages
968–969, 2005.

19. R. Tarjan. Data Structure and Network Algorithm. Society for Industrial and
Applied Mathematics, 1983.

20. K. Tateishi, Y. Ishiguro, and T. Fukushima. A reputation search engine that
collects people’s opinions by information extraction technology. The Information
Processing Society of Japan (IPSJ) Transactions on Databases (TOD), 45(SIG 07),
2004. In Japanese.

21. T. Uno, T. Asai, Y. Uchida, and H. Arimura. Efficient mining algorithms for
frequent/closed/maximal itemsets. In Proceedings of FIMI04, 2004.

22. M. J. Zaki. Efficiently mining frequent trees in a forest. In Proc. SIGKDD’02,
pages 71–80, 2002.

Graph Clustering Based on Structural Similarity
of Fragments

Tetsuya Yoshida1, Ryosuke Shoda2, and Hiroshi Motoda2

1 Graduate School of Information Science and Technology,
Hokkaido University,

N-14 W-9, Sapporo 060-0814, Japan
yoshida@meme.hokudai.ac.jp

2 Institute of Scientific and Industrial Research, Osaka University,
8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
{shoda, motoda}@ar.sanken.osaka-u.ac.jp

Abstract. Resources available over the Web are often used in combi-
nation to meet a specific need of a user. Since resource combinations
can be represented as graphs in terms of the relations among the re-
sources, locating desirable resource combinations can be formulated as
locating the corresponding graph. This paper describes a graph clustering
method based on structural similarity of fragments (currently, connected
subgraphs are considered) in graph-structured data. A fragment is char-
acterized based on the connectivity (degree) of a node in the fragment.
A fragment spectrum of a graph is created based on the frequency distri-
bution of fragments. Thus, the representation of a graph is transformed
into a fragment spectrum in terms of the properties of fragments in the
graph. Graphs are then clustered with respect to the transformed spec-
tra by applying a standard clustering method. We also devise a criterion
to determine the number of clusters by defining a pseudo-entropy for
clusters. Preliminary experiments with synthesized data were conducted
and the results are reported.

1 Introduction

1.1 Motivation

A huge number of (computing) resources are now available over the Web. Users
may select some of these resources by exploiting relations among them. For
example, URLs represent resources available over the Web, connected to each
other by hyperlinks as shown on the left-hand side of Fig. 1 (hyperlinks, depicted
as dotted lines, are directed edges). Suppose that the pattern comprising URLs
{K, M, A, B} is frequently observed in a log file of Web browsing. When a
user follows or selects URLs {K, M, A}, it is likely that he/she may select URL
B. Thus, by discovering the pattern shown on the right in Fig. 1, it will be
possible to help users to select or locate further resources by recommending
other resources that appear in the pattern. As another example, Web citation
analysis is reported and compared with bibliographical citation analysis in [12].

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 97–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

98 T. Yoshida, R. Shoda, and H. Motoda

B

K

C L

F E

G

N

M

I

A

D

J

H

+

+

+

+

+

+

+ +

+

+

+

Fig. 1. Example of resource selection (web browsing pattern)

Co-cited
by F

B

K

C L

F E

G

N

M

I

A

D

J

H

+

++

+ B

K

C L

F E

G

N

M

I

A

D

J

H

+

*

*
*

*

*

Fig. 2. Example of co-citation graph

Although URLs G and H are not connected to each other directly, they are both
pointed to (cited) by F. Thus, G and H are co-cited by F, as shown on the
left-hand side of Fig. 2. In terms of this kind of co-citation relation, URLs are
(implicitly) connected to each other as shown on the right in Fig. 2 (co-citation
relations, depicted as thick lines, are undirected edges). Once co-citation graphs
are constructed, various analyses can be conducted on the graphs. For instance,
URLs H and A might be interesting because they each have a large number of
co-citation relations.

As illustrated in the above examples, since resource combinations can be
represented as graphs in terms of the relations among the resources, locating de-
sirable resource combinations can be formulated as locating the corresponding
graph. In our approach it is assumed that relations among resources are speci-
fied externally, such as hyperlinks or co-citation relations; how to define relations
among resources to construct appropriate graph-structured data is beyond the
scope of this research. When a user tries to locate desirable resource combina-
tions, the ultimate goal of this research is to support the selection of resource
combinations in terms of graph structures over the resources.

1.2 Mining Graph-Structured Data

Various research efforts have addressed the extraction of knowledge from the
vast body of unstructured Web data [2]. The majority of widely used data min-
ing methods are for data that does not have structure, and is represented by

Graph Clustering Based on Structural Similarity of Fragments 99

attribute-value pairs. Decision trees [14, 15] and induction rules [10, 3] relate
attribute values to target classes. Association rules often used in data mining
also utilize this attribute-value pair representation. However, the attribute-value
pair representation is not suitable for representing a more general data struc-
ture, and there are problems that need a more powerful representation. The most
powerful representation, capable of handling relations and therefore structure,
would be inductive logic programming (ILP) [11] based on first-order predicate
logic. It can represent general relationships embedded in data, and has the merit
that domain knowledge and acquired knowledge can be utilized as background
knowledge. However, in exchange for its rich expressibility it has problems of
time complexity [5].

On the other hand, any structure that can be represented as a relation can
be considered as a graph. Therefore, knowledge discovery from such structures
can be addressed as a case of discovery from graph-structured data. Various
research approaches such as AGM [6], FSG [7], Subdue [4] have been pursued
for mining from graph-structured data. Some applications of graph mining are
the finding of typical Web browsing patterns, identifying typical substructures
of chemical compounds, finding typical subsequences of DNA, and discovering
diagnostic rules from patient-history records.

We have applied our graph mining method called GBI [8] to extract typi-
cal patterns from the hepatitis dataset provided by Chiba University Hospital
in the Active Mining project [9, 20]. GBI extracts connected subgraphs from
graph-structured data by conducting greedy search without backtrack. Because
of its greedy search, it can handle large-scale graph-structured data. One draw-
back of its search strategy is that search is incomplete in the sense that not
all the subgraphs are enumerated. One of the problems we encountered in the
project is that a huge number of patterns (connected subgraphs, in our ap-
proach) can be extracted from large-scale graph-structured data by applying
our method. The number of extracted subgraphs will be even greater, and the
problem more severe, if one applies methods that conduct complete search for
subgraphs. Thus, although patterns can be extracted from graph-structured data
by applying graph mining methods, it becomes very difficult to evaluate all the
extracted patterns.

1.3 Clustering Graph-Structured Data

Although the number of graphs to be considered can be huge, some compo-
nents of graphs share structural properties. For example, chemical compounds
that include a benzene ring (aromatic compounds) have similar chemical prop-
erties because they share the benzene ring. This motivates a research branch of
computational chemistry called (quantitative) structure activity relationships.
In QSAR, the relationship between the property or activity of chemical com-
pounds and their structure has been studied. As another example, starting from
the pioneering work in [19], much research has been carried out showing that
many graphs or networks can be categorized as so-called “small world” networks
in terms of their structure [1]. Small-world networks share the properties that,

100 T. Yoshida, R. Shoda, and H. Motoda

although nodes are densely connected locally with their neighbors, the overall
average path length between two nodes in the network is relatively short due to
the existence of some edges connecting distant nodes.

By assuming that graphs with similar structure share some properties, in
this research we aim at clustering graph-structured data based on their struc-
tural similarity. When graphs are categorized into clusters, a small number of
graphs can be selected from each cluster as representatives. As in the research
on small-world networks, we consider the structural properties of a graph in
terms of connectivity (degree) of nodes in the graph, and transform the graph
representation graph into a corresponding spectrum. This transformation into
a spectrum acts as a kind of hash function. Thus, if a user can specify the
desirable resource combinations as a graph, our method can be utilized to dis-
criminate the graphs of resource combinations into similar and dissimilar ones
in terms of their corresponding spectra. Graphs are then clustered with re-
spect to the transformed spectra by applying a standard clustering method.
We also propose a method, based on our notion of pseudo-entropy of a clus-
ter, to determine the appropriate number of clusters to create. Preliminary ex-
periments on synthetic data were conducted; the results are reported in this
paper.

As described in Sect. 1.2, this research is motivated by the application of
GBI, which can handle general graph data with both directed and undirected
edges. However, as a first step, only undirected graphs are considered in this
paper, and labels of nodes and edges are not dealt with yet. The graph structure
currently handled corresponds to the example in Fig. 2. Since labels are not yet
dealt with, the two co-citation graphs on the right of Fig. 2 are considered as
isomorphic, and are categorized into the same cluster. Thus the work reported
here is preliminary in nature, since we do not yet deal with resources’ content
(e.g., the text within a Web page). However, filtering out graphs with respect
to structure can be utilized as preprocessing for more fine-grained and detailed
analysis of contents.

Various existing research has addressed similarity measures and clustering
methods for graph-structured data. Related work includes Topological Fragment
Spectra (TFS) [17] which characterizes the properties of chemical compounds in
terms of fragments (subgraphs) within the compounds. ANF [13] is an approach
to the fast calculation of similarity for large-scale graph-structured data. Our
method is motivated by TFS, but differs in two respects: 1) calculation of frag-
ment spectra, and 2) extension to clustering of spectra.

Organization. This paper is organized as follows: Section 2 describes a method
for representing the properties of a graph as a spectrum of fragments (sub-
graphs). Experiments on the calibration of the proposed fragment spectrum
are also reported. Section 3 describes the clustering of fragment spectra and a
method for determining the number of clusters. Preliminary experiments with
synthetic data are reported in Section 4. Brief concluding remarks and future
directions are given in Section 5.

Graph Clustering Based on Structural Similarity of Fragments 101

2 Fragment Spectrum of a Graph

2.1 Preliminaries

A simple graph is denoted by G = (V, E) where V is a set of vertices and E ⊆
V ×V a set of (undirected) edges in G. For any vertices v, v′ ∈ V , if (v, v′) ∈ E,
v is said to be adjacent to v′. Let G = (V, E) be a graph. For a vertex v ∈ V , the
set of vertices adjacent to v is denoted by NG(v). |NG(v)|, the size of NG(v), is
called the degree of v with respect to G. |NG(v)| is also referred to as degreeG(v).
Let G = (V, E) and G′ = (V ′, E′) be two graphs. G is called a subgraph of G′

when V ⊆ V ′ and E ⊆ E′, and is denoted as G ⊆ G′.

2.2 Fragment Spectrum

Similarity measures for graphs can be categorized into two approaches: the
direct-comparison approach and the fingerprint-based approach [16]. In the for-
mer approach, the similarity between two graphs is measured either using their
maximum common subgraphs or the maximum common edge subgraphs. The
maximum common subgraphs are identified in the two graphs, and the sizes (ei-
ther the number of nodes or of edges) of these subgraphs are used to measure the
similarity. Although the similarity can be measured directly on the graphs, exact
identification of the maximum common subgraphs can be very expensive in prac-
tice. On the other hand, in the latter approach, a graph is represented as a bit
string, each bit indicating the presence or absence of a predefined substructure
(which acts as a key descriptor). The similarity between two graphs is measured
by comparing their corresponding bit strings. Although the fingerprint-based
approach requires selection of the key descriptor, we take this approach since it
is simple, and is easy to put into practice.

We aim to capture structural properties of a graph based on the fragments
within the graph, and represent it as a fragment spectrum1. Currently a fragment
of a graph is defined as a connected subgraph in the graph. Hereafter, we consider
only connected subgraphs. Figure 3 shows an example of the construction of a
fragment spectrum using our approach. The score of a fragment in a graph G
is calculated by a function FScore, which is explained in Sect. 2.3. The graph
in Fig. 3 has one fragment with score 1, three fragments with score 5, three
fragments with score 6, etc. Based on the frequency of fragments with the same
score, the fragment spectrum for the graph is represented as a vector fs =
(0, 0, 1, 4, 3, . . .), where fs[i] represents the frequency (count) of fragments with
score i. Pseudo-code for constructing a fragment spectrum is shown in Fig. 4.

2.3 FScore Function

A fragment F in a graph G is characterized as a score by a function called
FScore, based on the fragment’s connectivity. Each node v in a fragment F is
scored based on its degree, and the score of F is calculated from the scores of
its nodes. We consider the following two measures of ‘degree’ for a node v ∈ F :
1 The name “fragment spectrum” follows the work on Topological Fragment Spectra

(TFS) [17].

102 T. Yoshida, R. Shoda, and H. Motoda

3
2

1
2

3 3

Score each node based on its
connectivity (degree)

3

2

2
3

3

2

3

3 1

3

3

33

3

2

fragment spectrum w.r.t.
the frequency of fragments
with the same score

Extract fragments (connected subgraphs),
and score them based on the scores of
nodes in the fragments

4 fragments
with score 5

3 fragments
with score 6

Score of fragment

fr
eq

ue
nc

y

1 fragment
with score 4

3

1

Fig. 3. Fragment spectrum of a graph

fragment spectrum(graph G)
fs: fragment spectrum of G
initialize fs to 0
forall fragment (connected subgraph) F ∈ G

fs[FScore(F, G)] := fs[FScore(F, G)] + 1
return fs

Fig. 4. Fragment spectrum construction

– degree solely within the fragment
– degree within the original graph

The former follows the standard definition of degree in a graph, and focuses
on the connectivity solely in the fragment. However, the degree in a fragment
is invariant with respect to the graph containing that fragment. To reflect dif-
ferences between the original graphs, the latter measure considers the degree
within the original graph, in the expectation that that the relationship of F to
the remaining part of G works as a sort of context of F within G.

In addition, the difference between the scores of nodes can be magnified using
polynomials of the score. The score of a fragment is calculated based on the
scores of the fragment’s nodes, using one of the following methods:

– sum of the scores of nodes
– square sum of the scores of nodes

Graph Clustering Based on Structural Similarity of Fragments 103

Table 1. FScore function

degree of node
original graph fragment

sum FScore1 –
square sum FScore3 FScore2

FScore functions to calculate the score of a fragment are summarized in Table 1.
With the combination of “sum” and “fragment”, the fragments with the same
number of nodes and edges have the same score regardless of their structure or
connectivity. Thus, since it does not reflect structural properties of the graph, it
is not considered and thus is left blank (–) in the table.

The number of fragments in a graph G increases exponentially with respect
to its size (the number of nodes and edges). Thus, it becomes difficult to com-
pare spectra of graphs with different size since the overall shape of the spectra
can be very different. To make it easy to compare fragment spectra of graphs
with different size, a normalized fragment spectrum is defined by dividing each
value (frequency of fragments) in the fragment spectrum by the total number of
fragments in the graph. Note that currently normalization is considered only for
the frequency of fragments. Normalization of scores is not yet considered.

In summary, six FScore functions (three variations in Table 1, and their cor-
responding normalizations NFScore1, NFScore2, NFScore3) are currently used.

2.4 Calibration of Fragment Spectrum

This section reports the experiments on the calibration of the proposed fragment
spectrum, to verify that graphs with different structure can be differentiated with
respect to the corresponding fragment spectra. Four types of graph structure are
considered: line, ring, ring lattice and star. Graphs with these structures are pre-
pared such that the average path length between two nodes, which corresponds
to the characteristic path length in small-world networks [19], decreases in the
order of line, ring, ring lattice and star structure. To simplify the calibration, rel-
atively small graphs of these types were prepared, as shown in Figs. 5, 6, 7 and 8.

For graphs with the same number of nodes, a graph with line structure and one
with ring structure differ only by a single edge. Thus these two structures can be
considered as being very similar. The ring lattice structure in Fig.7 corresponds
to the β model in [18]. It is similar to the ring structure, but each node is
connected to k neighbors (here, k was set to 4). On the other hand, a star
structure is different from these in terms of connectivity, since a graph with star
structure has one “central” node which is connected to all the other nodes. When
each node corresponds to a scientific paper, and the relations among nodes are
defined as co-citation relations (similar to the example in Fig. 2), a node that
appears at the center of a star may represent a seminal paper.

Examples of fragment spectra for these graphs are shown in the appendix.
For instance, using the NFScore3 function described above, spectra of graphs
with star structure in Fig. 8 have peak band elements (normalized frequencies)

104 T. Yoshida, R. Shoda, and H. Motoda

Fig. 5. Line Fig. 6. Ring

Fig. 7. Ring lattice Fig. 8. Star

at the tail of the spectra2, as shown in Fig. 21. Thus, if the maximal value of
score is known for each graph, or the spectrum is normalized with respect to the
score, a high-pass filter for fragment spectra might be useful for extracting from
a collection of graphs those that have star structure.

Spectra for the 8-node graphs in Figs. 5, 6, 7 and 8 are compared in Fig. 9.
Fragment spectra were created using NFScore3 (a normalized score function
was used to reveal the overall shape of spectra). The graph with ring structure
has an almost flat spectrum (upper right in Fig. 9), because the frequency of
fragments for each score is almost the same. The graphs with line structure and
ring structure are quite similar in terms of the number of nodes or common
subgraphs. The spectrum of the former also has flat components, but it includes
additional components with decreasing relative frequency. Using NFScore3, the
graph with ring-lattice structure (lower left) has just a few elements with growing
frequencies. The graph with star structure (lower right) has a peak band, which
arises because the central node has a large score (degree) compared to the other
nodes; since the scores of fragments in a star graph differ only with respect to
the number of non-central nodes, they tend to be very similar.

2 As described in the appendix, horizontal axes (score of fragment) are aligned to the
maximal score in the rightmost graph in each figure.

Graph Clustering Based on Structural Similarity of Fragments 105

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

Fig. 9. Fragment spectra of graphs with eight nodes using NFScore3 (upper left: line
(Fig. 5), upper right: ring (Fig. 6), lower left: ring lattice (Fig. 7) lower right: star
(Fig. 8))

From this result, it can be said that fragment spectra of graphs with different
structure also tend to have rather different shape or pattern. Thus, the score
functions can be used as a kind of hash function to discriminate graphs with
different structure. However, graphs with different spectra can be considered as
different, but different graphs may come to the same spectrum when a hash
collision occurs, as in many hash functions. Thus, we do not claim that fragment
spectra alone are enough to differentiate graphs with different structures.

3 Clustering Fragment Spectra

After transforming the representation of graphs into the corresponding frag-
ment spectra by the method in Sect. 2, graphs are clustered with respect to
the transformed spectra by applying a standard clustering method. Among var-
ious clustering methods, we simply utilize the K-means method with respect
to the similarity of fragment spectra. Our main contribution for clustering is
to devise a criterion to determine the number of clusters, since the number of
clusters must be specified beforehand in many clustering methods. Inspired by
the divide-and-conquer strategy in decision tree construction algorithms [14, 15],
we view clustering of data as the division of the whole data into the specified
number of clusters. By defining a pseudo-entropy for a cluster, the quality of

106 T. Yoshida, R. Shoda, and H. Motoda

clustering is measured as the information gain ratio [15] in the clustered data
relative to its unclustered state.

3.1 Similarity of Fragment Spectra

A spectrum is conceived as a vector in a multi-dimensional space, where each di-
mension corresponds to a fragment score and the value represents the frequency
or normalized frequency of fragments with that score. When comparing two frag-
ment spectra of different dimensions (scores), the one with smaller dimension is
padded with zeroes for the larger dimensions. By regarding the spectra as vec-
tors, it might be possible to utilize similarity measures for vectors such as cosine
similarity. However, toward incorporating nominal attributes such as labels of
nodes and edges in future work, currently similarity is measured for each di-
mension separately and averaged. Similarity in one dimension is calculated by
projecting the vector onto the corresponding dimension, and measured as the
relative range of the projection, as shown in Fig. 10. Our similarity measure of
graphs Gi and Gj in terms of their spectra is defined as:

Sij =
1
M

M∑
m=1

(1 − |fsim − fsjm|
maxfsm − min fsm

) (1)

fsim: mth coordinate value of fsi for graph Gi

maxfsm: maximal value for the mth coordinate for all spectra
min fsm: minimal value for the mth coordinate for all spectra
M : maximal dimension for all the spectra

cluster

Fig. 10. Similarity of spectra

3.2 Pseudo-Entropy of a Cluster

A machine learning method C4.5 [15], which constructs a decision tree, selects
an attribute to divide the data based on the entropy of data before and after
the division. We apply this approach to determine the number of clusters by

Graph Clustering Based on Structural Similarity of Fragments 107

defining a pseudo-entropy of data in clustering. Figure 11 illustrates our notion
of pseudo-entropy of a cluster. In the standard concept of entropy, concentrated
data has low entropy while scattered data has high entropy. However, we regard a
cluster with concentrated data as good, since it certainly forms a cluster of data,
but we also regard a cluster with scattered data as good, since it is difficult to
further divide them into (meaningful) sub-clusters. Thus, we would like to give
low pseudo-entropy to these clusters. On the other hand, if the data inside a
cluster is rather separated, as shown on the right in Fig. 11, we regard it as bad
since it is possible to further divide the cluster. Thus, we would like to give high
pseudo-entropy to this kind of cluster.

We define a pseudo-entropy of cluster Ck as PEnt(Ck) such that it has low
value either when data is evenly distributed in a cluster or when all the data
concentrate on a small portion in a cluster, as follows:

PEnt(Ck) = − 1
| Ck |2

|Ck|∑
i=1

|Ck|∑
j=1

(Sij log2 Sij + (1 − Sij) log2(1 − Sij)) (2)

PEnt(Ck): pseudo-entropy of cluster Ck

|Ck|: size (number) of data in cluster Ck

Sij∈[0,1]: similarity of fragment spectrum fsi and fsj

PEnt(Ck) is calculated based on the pair-wise comparison of data within the
cluster. Sij ∈ [0,1] corresponds to the similarity of two data (spectra of graphs
Gi and Gj) within the cluster, and Dij = 1 - Sij corresponds to the dissimilarity.

Intuitively, when comparing two graphs Gi and Gj , let’s consider an event
I where Gi and Gj are isomorphic. Also, let’s consider an event N where Gi

and Gj are not isomorphic. These two events are mutually exclusive. Since Sij

∈ [0,1], Dij ∈ [0,1], and Sij + Dij = 1, we treat Sij as the probability of
the event I and Dij = 1 - Sij as the probability of the event N . The value
−(Sij log2 Sij+(1−Sij) log2(1−Sij)) = −(Sij log2 Sij+Dij log2 Dij) corresponds
to the binary entropy function for a binary random variable, whose value is I
with probability Sij and N with probability Dij . The average of this value for
all pair-wise comparisons of data in a cluster is calculated in (2).

Good cluster
(concentrated with

similar data)

Good cluster
(scattered with
dissimilar data)

Bad cluster
(partially

similar/dissimilar)

Fig. 11. Pseudo-entropy of cluster

108 T. Yoshida, R. Shoda, and H. Motoda

When all the data in a cluster are the same, and concentrated on a single
point in multi-dimensional space, Sij = 1 for all pairs of data in the cluster, so
the numerator of (2) becomes 0 and the pseudo-entropy is minimized. Likewise,
when all the data in a cluster are completely dissimilar (Sij = 0) and scattered
within the cluster, the numerator also becomes 0. On the other hand, when the
data are partially similar and dissimilar to each other (Sij = 0.5), the numerator
is maximized.

3.3 Information Gain Ratio for Cluster

Based on the difference of pseudo-entropy of cluster in (2) before (i.e., the whole
unclustered data) and after clustering, we define an information gain ratio of
cluster (IGRC) for the situation where the data are assigned to K clusters as:

IGRC =
PEnt(C) −

∑K
k=1

|Ck|
|C| PEnt(Ck)

−
∑K

k=1
|Ck|
|C| log2

|Ck|
|C|

(3)

PEnt(Ck): pseudo-entropy of cluster Ck

PEnt(C): pseudo-entropy of the whole unclustered data

Note that when each data item is assigned to a cluster containing only that
item, the numerator of (3) is maximized since the entropy of each cluster is 0.
Thus, to penalize such an over-clustered situation, the difference is divided by
the split gain of clustering as in C4.5 [15].

Our criterion for the number of clusters is to select the number of clusters
which maximizes the value of IGRC. This criterion is used in the experiments
reported in the following section.

4 Preliminary Experiment

Preliminary experiments were conducted to evaluate the proposed method over
synthetic data. This section explains experimental settings and reports the
results.

4.1 Synthetic Data

In experiments, synthetic data (graphs) were created by preparing a predefined
set of graphs (which we refer to below as base graphs) and appending the

Fig. 12. Appended subgraphs

subgraphs shown in Fig. 12. The synthesized
graphs are called derived graphs. The base
graphs are prepared with respect to 1) the
number of nodes and edges, and 2) configu-
ration. The following two experiments were
conducted:

Graph Clustering Based on Structural Similarity of Fragments 109

Fig. 13. Example of graphs in Exp.1

Fig. 14. Examples of graphs in Exp.2

Exp.1. number of nodes and edges: graphs with different numbers of nodes and
edges but similar configuration

Exp.2. configuration: graphs with dissimilar configurations but the same num-
ber of nodes and edges

Base graphs used in Exp.1 and Exp.2 are shown in Figs. 13 and 14, respectively.
The number of graphs (with the base graphs and derived graphs) was 18 in
Exp.1 and 61 in Exp.2. One drawback in the above setting is that, despite
much research, it is not yet known what constitutes the “correct” measure of
similarity/dissimilarity of graph configurations. Thus, when preparing graphs in
Exp.2, similarity is based on our subjective assessment.

4.2 Results

Six functions from Sect. 2 were used to create fragment spectra for the graphs
in Exp.1 and Exp.2. The spectra were then clustered by K-means by setting
K so as to obtain the maximal value of IGRC. If the structural properties of
graphs are to be reflected on the number of nodes/edges and the configuration,
we hypothesized that graphs should be categorized into clusters such that each
cluster includes only the graphs that share the same base graph. Thus, the
desirable value of K would be 3 for Exp.1 and 4 for Exp.2. The number of
clusters K with the maximal value of IGRC in the experiments is summarized
in Table 2. Changes of IGRC with NFScore1 for Exp.1 and Exp.2 are shown in
Figs. 15 and 16 respectively.

In Exp.1, the desired value of K (K=3) was obtained with NFScore1 and
NFScore3. In addition, the graphs were clustered as intended, in the sense that

110 T. Yoshida, R. Shoda, and H. Motoda

Table 2. k with maximal IGRC

FScore function k with maximal IGRC
Exp.1 Exp.2

FScore1 9 2
FScore2 2,3 2
FScore3 8 17

NFScore1 3 2
NFScore2 2 2
NFScore3 3 2

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12

number of cluster

IG
R

C

Fig. 15. IGRC in Exp.1 (with NFScore1)

0.1

0.11

0.12

0.13

0.14

0 5 10 15 20
number of cluster (k)

IG
R

C

Fig. 16. IGRC in Exp.2 (with NFScore1)

all the graphs with the same base graph were categorized into the same cluster.
On the other hand, except for FScore3, K=2 gave the maximal value of IGRC
in Exp.2, and the hypothesized value (K=4) was not attained.

4.3 Discussion

From Table 2, it can be said that normalized score functions gave better clus-
tering. The number of subgraphs in a graph G increases exponentially with
respect to its size (the number of nodes and edges). Thus, as the size of graph
increases, the similarity of graphs that share some base graph tends to decrease
since the difference in the frequency of fragments with the same score gets larger
in (1). This results in categorizing the graphs into different clusters. Normal-
ization contributed to reducing this effect. On the other hand, with FScore2
and NFScore2, which use the degree of a node within the (extracted) fragment,
the maximal value of IGRC was obtained at K=2 for both Exp.1 and Exp.2.
Thus, these functions were not effective for clustering graphs with respect to
configuration. This indicated that considering the degree of each node in the
context of the original graph may be effective in reflecting structural properties
of fragments.

As described above, the value of IGRC was maximized at K=2 except for
FScore3 in Exp.2. Figure 17 illustrates the clustered graphs with NFScore1.
As shown in that figure, all the graphs that share the same base graph were
assigned into the same cluster, not split between clusters. However, our cri-
terion (maximization of IGRC) could not divide the clusters into smaller ones.

Graph Clustering Based on Structural Similarity of Fragments 111

Fig. 17. Clustered graphs in Exp.2

The two graphs on the left in Fig. 14 were categorized into the same cluster.
One possible conjecture is that a graph with ring structure can be rewritten
into the other graph just by removing one edge and adding it as another edge.
If these graphs are considered as similar in terms of rewriting operations for
graphs3, the desirable number of clusters may be considered as 3. In the pre-
vious result, the value at K=3 is similar to the value at K=2 with NFScore1,
albeit that it was not the maximal. Still, the results of Exp.2 indicate that
much work needs to be done to improve our clustering method with respect to
configuration.

5 Concluding Remarks

This paper has described a graph clustering method based on structural sim-
ilarity of fragments (currently, connected subgraphs are considered) in graph-
structured data. The representation of a graph is transformed into a fragment
spectrum which represents the frequency distribution of fragments, in terms
of the connectivity of a node within the fragment. The graphs are then clus-
tered by applying a standard clustering method (K-means) with respect to the
transformed fragment spectra. The quality of clustering is estimated based on a
pseudo-entropy for a cluster, in order to determine the number of clusters. Pre-
liminary experiments with synthesized graphs were conducted and the results
reported. The results indicate that our method can cluster graph-structured
data with respect to the number of nodes and edges, but much further work
is needed with respect to the configuration. Especially, the number of clusters
tends to be under-estimated by our criterion. Currently our method only deals
with superficial similarities in structure; we would like to extend the method to
incorporate node and edge labels, so that resource combinations over the Web
can be considered in terms of their contents.

3 A kind of edit-distance measure is used in Subdue [4] for inexact graph matching.

112 T. Yoshida, R. Shoda, and H. Motoda

Acknowledgments

The authors are grateful to the editors for fruitful discussions to refine this pa-
per. They also gratefully acknowledge the enormous help by Takashi Matsuda
for his advice on the implementation and experiments. This work was partially
supported by grants-in-aid for scientific research (No. 60002309, No. 13131206)
funded by the Japanese Ministry of Education, Culture, Sport, Science and
Technology.

References

1. L.A.N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of small-world
networks. Proceedings of the National Academy of Sciences, 97(21):11149–11152,
2000.

2. S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, 2002.

3. P. Clark and Niblett T. The cn2 induction algorithm. Machine Learning, 3:261–
283, 1989.

4. D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems,
15(2):32–41, 2000.

5. L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chem-
ical compound. In Proc. the 4th International conference on Knowledge Discovery
and Data Mining, pages 30–36, 1998.

6. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns
from graphs: Mining graph data. Machine Learning, 50(3):321–354, 2003.

7. M. Kuramochi and G.Karypis. Frequent subgraph discovery. In Proc. of the 1st
IEEE ICDM, pages 313–320, 2001.

8. T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Mining patterns from struc-
tured data by beam-wise graph-based induction. In Proc. of The Fifth International
Conference on Discovery Science, pages 422–429, 2002.

9. T. Matsuda, T. Yoshida, H. Motoda, and T. Washio. Beam-wise graph-based
induction for structured data mining. In International Workshop on Active Mining
(AM-2002): working notes, pages 23–30, 2002.

10. R. S. Michalski. Learning flexible concepts: Fundamental ideas and a method
based on two-tiered representaion. Machine Learning: An Artificial Intelligence
Approach, 3:63–102, 1990.

11. S. Muggleton and L. de Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19(20):629–679, 1994.

12. S. Nomura, T. Miki, and T. Ishida. Comparative Study of Web Citation Analysis
and Bibliographical Citation Analysis in Community Mining. IEICE Transaction,
J87-D-I(3):382–389, 2004. (in Japanese).

13. C.R. Palmer, P.B. Gibbons, and C. Faloutsos. ANF: A fast and scalable tool for
data mining in massive graphs. In Proc. of the KDD-2002, 2002.

14. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
15. J. R. Quinlan. C4.5:Programs For Machine Learning. Morgan Kaufmann Publish-

ers, 1993.
16. J.W. Raymond, C.J. Blankley, and P. Willett. Comparison of chemical cluster-

ing methods using graph- and fingerprint-based similarity measures. Molecular
Graphics and Modelling, 21(5):421–433, 2003.

Graph Clustering Based on Structural Similarity of Fragments 113

17. Y. Takahashi, H. Ohoka, and Y. Ishiyama. Structural similarity analysis based on
topological fragement spectra. Adavances in Molecular Similarity, 2:93–104, 1998.

18. D.J. Watts. Small Worlds: The Dynamics of Networks Between Order and Ran-
domness. Princeton University Press, 2004.

19. D.J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998.

20. T. Yoshida, G. Warodom, A. Mogi, K. Ohara, H. Motoda, T. Washio, H. Yokoi,
and K. Takabayashi. Preliminary analysis of interferon therapy by graph-based
induction. In Working note of International Workshop on Active Mining (AM-
2004), pages 31–40, 2004.

Appendix: Examples of Fragment Spectrum

Fragment spectra of graphs shown in Figs. 5, 6, 7 and 8 are shown in Figs. 18,
19, 20 and 21, respectively. For each type of graph, the horizontal axes (fragment
score) are aligned to the maximal score in the rightmost graph in each figure. To
see the overall shape of spectra, normalized score functions are used to create
fragment spectra and thus the maximal value of vertical axis is set to 1.0. Since
the normalized frequency in NFScore1 is the same as that in NFScore3 (except
that the x-axis is rather stretched out since the score of each node is square
summed), NFScore2 and NFScore3 are used to create the spectra. Figs. 18,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Fig. 18. Spectra for graphs with line structure (with NFScore2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Fig. 19. Spectra for graphs with ring structure (with NFScore2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fig. 20. Spectra for graphs with ring lattice structure (with NFScore3)

114 T. Yoshida, R. Shoda, and H. Motoda

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

Fig. 21. Spectra for graphs with star structure (with NFScore3)

19, 20 and 21 indicate that fragment spectra of graphs with the same structure
have similar shape or pattern, and that fragment spectra of graphs with different
structure also tend to have rather different patterns in terms of the corresponding
spectra.

Connecting Keywords Through Pointer Paths
over the Web

Mina Akaishi1, Nicolas Spyratos2, Koichi Hori1, and Yuzuru Tanaka3

1 Rcast, University of Tokyo,
4-6-1 Komaba Meguro-ku Tokyo 153-8904, Japan

{akaishi, hori}@ai.rcast.u-tokyo.ac.jp
2 Laboratoire de Recherche en Informatique, Université de Paris-Sud,

LRI-Bât 490, 91405 Orsay Cedex, France
spyratos@lri.fr

3 Meme Media Laboratory, Hokkaido University, Japan
tanaka@meme.hokudai.ac.jp

Abstract. We propose a framework for discovering connections from a
source keyword to a target keyword through the Web pages containing
them. We are interested in connections provided by pointer paths leading
from a source page to a target page (a source page being a page con-
taining the source keyword, and a target page being a page containing
the target keyword). Each such path provides an “explanation” of the
connection, and the set of all such paths is considered as the “semantics”
of the connection.

When one talks about federation in the context of the Web, one usu-
ally means connecting a number of Web resources to cooperate towards a
common goal. A complementary though less known aspect is that of dis-
covering federations of Web resources by interpreting the pointer paths
connecting them. The work presented in this paper is a step in that di-
rection, introducing concepts and tools for discovering federations over
the Web.

1 Introduction and Basic Definitions

The rapid proliferation of information sources in recent years and the advent
of the Internet have created a world-wide web of interconnected information
resources. Today, the Web represents the largest collection of information re-
sources to which individuals have ever had access — and it continues to grow at
an accelerated pace.

Search engines of the Web allow users to access indexed resources using a
very simple search mechanism, namely keywords. When a keyword is submitted
to a search engine such as Google, the result is a ranked list of URLs of pages,
each of which contains the keyword. Similarly, when two or more keywords are
submitted the result is a ranked list of URLs of pages, each of which contains all
the keywords. In this context, co-occurrence of keywords in a page is one way of
relating keywords.

In this paper, we are interested in a different kind of relationship between
keywords that can be seen as complementary to the co-occurrence relationship.

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 115–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 M. Akaishi et al.

More precisely, we consider a source keyword and a target keyword, and we are
interested in connections provided by pointer paths leading from a source page to
a target page. Here, a source page is defined to be any page containing the source
keyword, and a target page is defined to be a page containing the target keyword.

Such pointer paths may reveal unexpected ways in which the source key-
word is connected to the target keyword. For example, if the name of a Japanese
professor (the source keyword) has often been cited in connection with the Com-
puter Science Institute of Crete (the target keyword), one may wonder how such
a connection might have been created.

One way to go about it is to start with the set of all source pages, and
then follow all pointer paths leading to target pages. Each such path is called
a connection path, and the pages and pointers that constitute the path provide
incremental knowledge that describes one connection from the source keyword
to the target keyword. Therefore a connection path is defined to be a sequence
of pairs of the form

〈url0, anchor1〉, 〈url1, anchor2〉,...,〈urln, anchorn〉

Here, url0 is the URL of a page containing the source keyword and an anchor
(anchor1) pointing to a page whose URL is url1; the page whose URL is url1
contains an anchor (anchor2) pointing to the page whose URL is url2; and so
on, until anchorn points to a page whose URL is urln and contains the target
keyword. This definition of connection path is shown schematically in Fig. 1.

url1url1 url2url2 urln-1urln-1

anchor2 anchorn-1 anchorn

urln

anchor0

url0

Source page

connection path
from source to a target

anchor3anchor1

Target page

Fig. 1. A connection-path

A connection path can serve as the basis for an “explanation” of the connec-
tion between the source keyword and the target keyword. This explanation is
formed based on some or all of the following information items that are available
in each node of the path:

– the anchor (if it is meaningful);
– the paragraph of text in which the anchor is embedded;
– the URL of the page.

Connecting Keywords Through Pointer Paths over the Web 117

In as much as names carry semantics, the above information items can help
explain the connection from the source keyword to the target keyword along the
path in question.

The main motivation of this work is to provide the possibility of “explaining”,
online, the connections between a pair of keywords (a source and a target), by
returning a set of paths connecting them, in much the same way as a search en-
gine “explains” a set of keywords by returning the set of pages that each contain
all the keywords. In this sense, our proposal complements the functionality of
keyword queries supported by search engines.

What we call a connection query is a pair of keywords (s, t), s being the source
keyword and t being the target keyword. The answer to a connection query is
defined to be the set of all connection paths from s to t. Connection queries are
the basic means that we use for discovering federations over the Web, and the
goal of this paper is to propose a software tool for evaluating connection queries
and visualizing their results.

The remainder of the paper is organized as follows. In Section 2, we discuss
the size of answers to connection queries, and propose ways of restricting that
size to manageable proportions. In Section 3, we present a mechanism for find-
ing connection paths and a system architecture, together with some examples.
Finally, in Section 4 we offer some concluding remarks and outline perspectives.

2 The Semantics of Connections over the WWW

When one needs to access information, one often does not know exactly what one
is searching for. Most of the existing systems — knowledge bases, databases, and
Web applications — only work when requirements are articulated in advance;
for example, one cannot search for information using Web search engines unless
one can describe the information in terms of keywords [1]. In general, only those
users who know what they are looking for can describe their request in the form
of a query. In a sense, they are looking for already known information, which
means that they have already accessed the target information in the past, or
that they are somehow convinced of its existence. However, for persons who
do not know what information they actually need, it is difficult to describe it
in the form of a query. By suggesting possible paths from a source page to
a target page, connection queries assist the user in discovering information of
interest.

The key concept here is that of a (directed) relationship between two key-
words, a source and a target. As we explained in the introduction, connection
queries capture precisely the semantics of that relationship, by providing as an
answer the set of all pointer paths from the source page to the target page. Each
of these paths provides an explanation of the relationship between source and
target in the way described earlier. Clearly, in general, the set of such paths is
huge; therefore one has to settle for “partial semantics”, that is, considering only
reasonable-sized subsets of the set of all paths. In order to define such subsets,
we propose to restrict the set of paths in three ways:

118 M. Akaishi et al.

– restricting the set of source pages;
– restricting the set of target pages;
– restricting the length of paths.

As a consequence, in the remainder of the paper, we shall consider connection
queries of a restricted form (that we shall still call connection queries). The
connection queries that we consider are specified by giving the following five
parameters:

– the source keyword
– the target keyword
– a set of source pages
– a set of target pages
– a maximal length of connection path

The answer to such a query is the set of all connection paths from a source
page (in the specified set of source pages) to a target page (in the specified set of
target pages) whose length is less than or equal to the specified maximal length.
We call this a connection-path graph.

It is important to note that co-occurrence of two keywords in a page cannot be
considered as a special case of connection between the two keywords, in the sense
explained above. Indeed, two keywords may co-occur in each of two pages with-
out being connected, while they can be connected without co-occurring in any
page. As mentioned earlier, search engines are mainly geared to co-occurrence
of keywords, while our proposal is mainly concerned with connectivity of key-
words. Therefore connectivity of keywords can be considered as an additional
functionality that complements that of co-occurrence.

We consider that knowledge is not a static entity but a dynamically evolving
entity that depends on context [1]. The descriptors of HTML documents are
given by other HTML documents. Even the creator of a page is not aware what
descriptors are given to his page. Descriptors involve a brief introduction of the
content, the role of a page or the purpose of its existence. Since anyone can
attach any descriptor as an anchor text to a Web page, a large knowledge pool
is dynamically formed.

In our framework, paths from a source page to a set of target pages are dynam-
ically extracted from the current collection of Web pages. Each path describes a
different context in which some desired information may be embedded, helping
users select the correct ways to reach the needed information. Paths also sug-
gest new contexts for the needed information, of which users may not have been
aware. Therefore, we contend that paths from a specified page to a set of target
pages lead users to desirable information. In addition, a path suggests unknown
narrative relations between a source and a target page.

3 A Framework for Connection Search

The main contribution of this paper is to propose a software tool for evaluating
connection queries and visualizing their results. We call this tool the Connection

Connecting Keywords Through Pointer Paths over the Web 119

Search System (or CSS for short). The present system relies on the help of a
search engine, and works as follows:

– Query Formulation
The user specifies the five parameters defining the connection query, by sub-
mitting to the system the source and target keywords, as well as an integer
l specifying the desired maximal length for connection paths. As for the sets
of source and target pages to be considered in the query, they are defined
as follows: the user is asked to submit an integer k; the source keyword is
submitted to a search engine, and the top k pages returned (as ranked by
the search engine) are taken to be the set of source pages for the query.
Similarly, the user is asked to submit an integer m; the target keyword is
submitted to a search engine, and the top m among the pages returned are
taken to be the set of target pages for the query. Clearly, other methods for
specifying the sets of source and target pages can be considered.

– Query Answering
The system returns the number of paths in the answer (or an estimate
thereof). If the user agrees then the system returns the actual set of paths;
otherwise the user can modify the parameters in the query so as to obtain a
result of reasonable size.

– Visualization of Results
The interface allows the user to explore each path in the answer as follows:
In each node of the path, the user can visualize the URL, the anchor and
the text in which the anchor is embedded, by clicking on appropriate but-
tons.

Figure 2 shows the architecture of the Connection Search System. The user
specifies the five parameters of the connection query, i.e., the source keyword,
the target keyword and the three integer bounds k, m and l restricting the set
of source pages, the set of target pages and the length of connection paths,

Connection Search Module

Connection paths

target
keyword

source
keyword

Search Engine

k ml

User-defined parameters

Fig. 2. Architecture of the Connection Search System

120 M. Akaishi et al.

target keyword
=“Spyratos”

source keyword
=“Knowledge Media

Laboratory”
k=1 m=l=3

source
page

target
pages

IntelligentBox

Publications (1995~

2nd International Workshop “Asccess Architectures…

3rd International Workshop “Asccess Architectures…

ISIP’03 The first Franco-Japanese Workshop…

Research

Research

Projects

Projects

Japanese

English

Fig. 3. A display hardcopy of the Connection Search System

respectively. The system then returns the set of connection paths satisfying the
query, in the form of a graph as shown in Figure 3.

The design of our connection search system uses two basic concepts, those
being the concept of context [2, 3, 4, 5, 6] and that of scope of a context. In
the following subsections, we introduce these two concepts and describe the
implementation details of the system.

3.1 The Notion of Context

In this paper we introduce the notion of context as proposed by Theokorakis
et al [2, 3, 4, 5, 6] as a conceptual modeling mechanism for organizing and man-
aging very large information bases. In computer science, some notion of con-
text has appeared in several areas, such as artificial intelligence [7, 8], software
development [9, 10, 11, 12], databases [13, 14, 15, 16], machine learning [17], and

Connecting Keywords Through Pointer Paths over the Web 121

knowledge representation [18, 19, 20]. All these notions are very diverse and serve
different purposes.

A context is a set of objects of interest, in which each object is associated
with a set of descriptors, and possibly with a reference to some other context. A
context is regarded as a modular representation of information, whose objective
is to model an object under different perspectives. Moreover, contextualization
can be used orthogonally to usual abstraction mechanisms such as instantiation,
attribution or class inheritance [2, 3, 4, 5, 6].

In some application environments the object descriptors are just keywords,
and such keywords may come from a controlled vocabulary. Furthermore, such
a vocabulary may be structured by a subsumption relation. For example, if the
objects are the books of a computer science library then their descriptors most
likely will be keywords from the ACM Computing Classification System (ACM,
1999, http://www.acm.org/class/). However, for the purposes of this paper, it
is immaterial whether descriptor definitions follow given rules or not.

What is important to keep in mind is that descriptors and references are
context dependent: an object can belong to different contexts and may have
different descriptors and/or different references in each context. This feature is
useful when we want to view an object from several perspectives.

3.2 Descriptors of Objects in the WWW

We treat a large collection of Web pages as a massive information base. Each
Web page is regarded as an object whose (location) identifier is given by a URL.
Each Web page is connected to other Web pages by hyper links, which on the
WWW are tagged by text or images in HTML documents. Users can browse
pages by following the hyper links embedded in each page. When a hyper link is
represented by text, the text is regarded as a descriptor of an object indicated
by the associated URL. We interpret this “anchor text” as a descriptor of the
linked document.

According to this interpretation, a Connection Search Module extracts de-
scriptors from Web pages as follows: In HTML documents, an anchor is a piece
of text or some other object (for example, an image) that marks the beginning
and/or the end of a hypertext link. The <A> element marks that piece of text
(or inline image) and gives its hypertextual relationship to other documents.
The text between the opening and closing tags, <A attributes > ...text...
is the start or destination (or both) of a link. The text written between the
start/end tags of an anchor is regarded as the descriptor of the object.

For example, let us examine the top page at the site of the Knowledge Media
Laboratory at Hokkaido University (url0 at top left in Figure 4). Two text
anchors are embedded in this page:

1. “Japanese”, linked to a page url1
2. “English”, linked to a page url2

Consequently, in the context of page url0, “Japanese” is the descriptor of
page url1 and “English” is the descriptor of page url2.

122 M. Akaishi et al.

url0url0

……….
……….
Japanese /

English
……….
……….

Ja
panese

English

url1url1 url2url2

Japanese : url1 � c1
English : url2 � c2

c0

Japanese : url1 � c1
English : url2 � c2

c0

Home : url4 � c4
About Lab. : url5 � c5
Members : url6 � c6
Research : url7 � c7

c1

Home : url4 � c4
About Lab. : url5 � c5
Members : url6 � c6
Research : url7 � c7

c1

Home : url14 � c14
About Lab. : url15 � c15
Members : url16 � c16
Research : url17 � c17

c2

Home : url14 � c14
About Lab. : url15 � c15
Members : url16 � c16
Research : url17 � c17

c2

Fig. 4. Objects and descriptors

3.3 Scope of a Context

Contexts are identified by context identifiers and objects by object identifiers,
but to keep the presentation simple we refer to these identifiers as contexts and
objects respectively. We use obj(c) to denote the set of objects of a context c,
dscr(o, c) for the set of descriptors of object o in context c, and ref(o, c) for the
reference of object o in context c. We recall that the reference of an object is
another context, and that an object might have no reference at all (in which case
ref(o, c) is considered to be undefined).

We call successor of a context c any context c′ referenced by an object of c,
and we use succ(c) to denote the set of all successors of c. More formally we have:

succ(c) = {ref(o)|o in obj(c) and ref(o, c) is defined}
We call descendant of c any context c′ such that either c′ is a successor of c

or there is a sequence of contexts c1, c2, · · · , cn such that c1 is successor of c, c′

is successor of cn, and ci is a successor of ci−1 for i=2, · · · , n.

Connecting Keywords Through Pointer Paths over the Web 123

We call scope of c, denoted by scope(c), the set of contexts consisting of c
together with all successors of c. For two contexts c1 and c2 in the scope of c,
we use the symbol c1 → c2 to denote that c2 is a successor of c1. In this way,
scope(c) is turned into a graph, also denoted by scope(c). Clearly, this graph can
be infinite and/or cyclic. However, for the purposes of this paper, we shall make
the following basic assumption:

Assumption: The scope of any context c is a finite, acyclic graph.

Obviously, the scope of c has c as its only root, and every leaf of the scope is a
context whose objects have no references. The longest path from the root c to a
leaf of the scope of c is what we shall call the depth of c, denoted by depth(c).
Figure 5 shows an example of the graph scope(c0).

c0

c1

c2

c4

c5

c6

c7

c14

c15

c16

c17

c8

c9

c25

c26

c27

c38

c37

Fig. 5. An example of the graph scope(c0)

The graph scope(c) shows all possible nodes that a user can reach from the
context c along reference links.

To find the relationships between a source and a target, we define the graph
connection-path(s_kw, k, l, m, t_kw). This is a subgraph of scope(c), where s_kw
is a source keyword, t_kw is a target keyword and three integer bounds k, m,
and l restrict, respectively, the sets of source and target pages and the length of
paths. A connection-path graph has the following features.

1. the root c is a context whose content includes keyword s_kw,
2. each leaf c′ is a context whose content includes keyword t_kw.

Figure 6 shows a connection-path graph, where c25, c7, c15 and c38 correspond
to the target pages.

124 M. Akaishi et al.

c0

c1

c2

c5

c7

c15

c17

c25

c38

Fig. 6. An example connection-path graph

3.4 Connection Search System: Examples

Let us examine some examples of connection path search. The connection-path
graph is constructed dynamically based on the dynamics of the Web resources.
Roughly speaking, a descriptor d is a keyword that briefly introduces the content,
the role of an object and the purpose of using an object that a user has in mind.
The connection-path graph gives not only the content information that includes
the keyword but also the path to reach the desired information.

First, let us see the connection-path graph from the context c0 in Fig. 4 to
the keyword “IntelligentPad”. Figure 7 shows the connection-path graph provid-
ing different perspectives that lead to pages about the “IntelligentPad” system.
IntelligentPad is a meme media system developed at Hokkaido University in
Japan. The graph shows four paths, reaching the following kinds of page:

1. a Japanese page for downloading the software,
2. a Japanese page of introduction to research concerning IntelligentPad,
3. an English software downloading page and
4. an English page of introduction to IntelligentPad.

Without actually seeing the contents of pages, the user can guess the content
because the path to each page gives such information.

Second, let us assume that we want to know the role of a person named “Ken
Satoh” at the “Knowledge Media Laboratory at Hokkaido University.” Figure 8
shows the connection-path graph as a graph of thumbnail icons of the object
pages on the paths.

We input “Knowledge Media Laboratory...” as a source keyword and “Ken
Satoh” as a target keyword in Japanese, then the Connection Search Module
gives a connection-path graph. A descriptor of each page is defined by a referral
page. In Figure 8, the descriptors are shown along the links. The meanings of
descriptors are the following.

Connecting Keywords Through Pointer Paths over the Web 125

Connection-Path

target keyword
=“IntelligentPad”

source keyword
=“Knowledge Media

Laboratory” k=1 m=l=3

source
page

target
pages

Japanese

English

Download

Download

Research

Research

Fig. 7. Connection-paths from “Knowledge Media Laboratory at Hokkaido University”
to “IntelligentPad”

d0: Knowledge Media Laboratory at Hokkaido University
d1: Japanese
d2: Project
d3: Intuitive Human Interface for Organizing and Accessing

Intellectual Assets (Japanese)
d4: Project contents (Japanese)
d5: Theoretical approach and simulation of Intuitive Human Interface for

Accessing (Japanese)
d6: English
d7: Project
d8: Intuitive HumanInterface forOrganizing andAccessing Intellectual Assets

The paths from a source to target objects denote the relations between
“Knowledge Media Laboratory at Hokkaido University” and “Ken Satoh.”

1. The path d1.d2.d3.d4 is “Knowledge Media Laboratory at Hokkaido Univer-
sity”.“Japanese”.“Project”.“(J) Intuitive Human Interface for Organizing
and Accessing Intellectual Assets”.“contents of the project”. It exists be-
cause “Ken Satoh” is a member of that project at the Knowledge Media
Laboratory.

2. Another path, d1.d2.d3.d5, shows more details about the research subject for
which he is responsible.

126 M. Akaishi et al.

d 1
: J

ap
an

es
e

d2: Project

d
3 : �

�
�
�
�

�
�
	

…

d �
: �

�
�
�
�
�

�
�
	

…

d
� : �

�
�
�
�

d
6 : E

nglish

d7: Project

d 8
: I

nt
ui

tiv
e

H
um

an

In
te

rfa
ce

…

Source page
(Source keyword :
“Knowledge Media
Laboratory”)

: Target page (Target keyword: “Ken Satoh”)

urlk1

urlk2

urlk3

Fig. 8. Connection-paths from “Knowledge Media Laboratory at Hokkaido University”
to “Ken Satoh”

Organization Charts

Dire
cto

ry
of

Facu
lty

and Staff

S
o

u
rc

e
p

ag
e

(S
ou

rc
e

ke
yw

or
d

: “
N

II”
)

: Target page (Target keyword: “Ken Satoh”)

Open House 2004

P
ub

lic
 L

ec
tu

re
s

E
nglish

R
es

ea
rc

h
F

ie
ld

urlNK1

urlNK2

urlNK3

urlNK4

The home page of
Prof. Ken Satoh

The home page of
Researcher1

The home page of
Researcher2

Fig. 9. Connection-paths from “NII” to “Ken Satoh”

Connecting Keywords Through Pointer Paths over the Web 127

Source page
Source keyword:
“Koichi Hori.”

: Target page (target keyword “Yuzuru Tanaka”)

A page of the research project in which
Prof. Tanaka participated.

Contents of research project that
Prof. Tanaka organized and
Prof. Hori attended.

Prof. Hori’s home page that
mentioned Prof. Tanaka.

Contents of journal papers at JSAI that
include Prof. Tanaka’s paper.

Fig. 10. Connection-paths from “Koichi Hori” to “Yuzuru Tanaka”

These paths show some aspects of “Ken Satoh” under the viewpoint of
“Knowledge Media Laboratory.”

The next example is shown in Figure 9. In this case, we see the position
of “Ken Satoh” in “National Institute of Informatics” (NII) and his activities.
The system finds the profile page of Prof. “Ken Satoh” from the NII top page
through the path “NII”.“Research Organization”.“Ken Satoh”. The last page
gives information about his position at NII. Moreover, the system returns other
paths from NII to researchers in NII whose publication lists include the name
Ken Satoh as a coauthor. It shows collaboration works among researchers around
Prof. Ken Satoh.

A final example is finding paths between “Koichi Hori” and “Yuzuru Tanaka”
to discover the relationships between the two authors of this paper.

When a user does not know the exact page for the source page, or he has
only a limited knowledge about it, finding the source page is difficult. In this
case one can use a search engine to find possible candidates as source pages.
In the example of Fig. 10, the integer bound k = 100 was used to restrict
the set of source pages. The connection-path graph is shown in Fig. 10, and
gives several connections between them. Among the source pages returned by
Google, only six pages gave connections: those with rankings 1, 2, 7, 26, 73
and 96.

128 M. Akaishi et al.

At the same time, the connection-path graph works as a search method to
find “Yuzuru Tanaka” who has a connection to “Koichi Hori.” In fact, there is
another Prof. “Yuzuru Tanaka” without any connection to Prof. “Koichi Hori.”

4 Conclusion

We have presented a framework for discovering narrative relationships on the
WWW and discussed its implementation in the form of what we call a Connec-
tion Search System. We have also presented examples showing how our system
works for discovering such narrative relationships, which might be unexpected
in some cases. We believe that the development of such tools can contribute
significantly in exploiting the wealth of information stored in the WWW.

One possible generalization of our framework is to consider a set of source
keywords and a set of target keywords, and find that subset of target keywords to
which all source keywords connect. These target keywords are then the common
“acquaintances” of all source keywords. We are currently investigating this and
other relationships among keywords, as well as their possible uses in forming
collections of keywords that are similar in some respects.

One aspect of our framework that was not discussed in this paper is how to
delimit a part of the Web, of manageable size, in which the search for connections
is to take place. One way to go about it is to specify a set of pages of interest to
a community of users. The set of pages, together with the links connecting them,
will then constitute the community repository: a user scope will be formed only
from pages and links within the repository. The maintenance of such a repository
can be supported by a crawler whose main tasks are to discover links among the
pages and to maintain the scope graphs of the users dynamically (i.e., update
the links and/or nodes as they are created or destroyed).

Acknowledgments

The authors would like to thank Prof. Ken Satoh (National Institute of Infor-
matics, Japan) and Toshiyuki Kikuchi (NorthGrid Corporation, Japan) for their
constructive comments and technical support.

References

1. K. Hori: Do knowledge assets really exist in the world and can we access such
knowledge? – Knowledge evolves through a cycle of knowledge liquidization and
crystallization. Lecture Notes in Computer Science, Springer, pp.1-13, 2005.

2. M. Theodorakis, A. Analyti, P. Constantopoulos, N. Spyratos: Context in Informa-
tion Bases. Proc. of Third IFCIS Conference on Cooperative Information Systems
(CoopIS’98), pp.260-270, 1998.

3. M. Theodorakis, A. Analyti, P. Constantopoulos, N. Spyratos: Contextualization
as an Abstraction Mechanism for Conceptual Modelling. Proc. of International
Conference on Conceptual Modeling / the Entity Relationship Approach (ER’99),
pp.475-489, 1999.

Connecting Keywords Through Pointer Paths over the Web 129

4. M. Theodorakis, A. Analyti, P. Constantopoulos, N. Spyratos: Querying Contex-
tualized Information Bases. Proc. of 24th International Information and Commu-
nication Technologies and Programming (ICTP’99), pp.260-270, 1999.

5. M. Theodorakis, A. Analyti, P. Constantopoulos, N. Spyratos: A Theory of Con-
texts in Information Bases. Information Systems Journal, Vol.19, No.4, pp.1-54,
2001.

6. M. Theodorakis, A. Analyti, N. Spyratos, P. Constantopoulos: Contextualization
as an Independent Abstraction Mechanism for Conceptual Modeling. Information
Systems Journal. (To Appear)

7. J. McCarthy: Notes on Formalizing context. Proc. IJCAI-93, pp555-560, 1993
8. R. Guha: Contexts: A Formalization and Some Applications. PhD thesis, Stanford

University, 1991
9. G. Gottlob, M. Schrefl and B. Rock: Extending Object-Oriented Systems with

Roles. ACM Trans. Inf. Syst., 14(3), pp.268-296, 1996
10. Y. Shyy and S. Su.: K, A High-level Knowledge Base Programming Language for

Advanced Database Applications. Proc. ACM-SIGMOD conference, pp.338-347,
1991

11. R. Katz: Towards a Unified Framework for Version modeling in engineering
Databases. ACM Comput. Surv., 22(4), pp.375-408, 1990

12. G. Kotonya, I. Sommerville: Requirements Engineering with Viewpoints. Software
Engineering Journal, pp.5-19, 1996

13. F. Bancilhon, N. Spyratos: Update Semantics of Relational Views. ACM Trans.
Database Syst., 6(4), pp.557-575, 1981

14. S. J. Hegner: Unique complements and decompositions of database schemata. Jour-
nal of Computer and System Sciences, 48(1), pp.9-57, 1994

15. S. Abiteboul, A. Bonner: Objects and Views. Proc. ACM-SIGMOD conference,
pp.238-247, 1991

16. A. Ouksel, C. Naiman: Coordinating Context Building in Heterogeneous Informa-
tion Systems. Journal of Intelligent Inf. Systems, 3(2), pp.151-183, 1994

17. S. Matwin, M. Kubat: The role of Context in Concept Learning. Proc. ICML-96,
Workshop on Learning in Context-Sensitive Domains, pp.1-5, 1996

18. J. Mylopoulos, R. Motschnig-Pitrik: Partitioning Information Bases with Contexts.
Proc. CoopISf95, pp.44-55, 1995

19. B. Czejdo, D. Embley: View Specification and Manipulation for a Semantic Data
Model. IS, 16(6), pp.585-612, 1991

20. L. Campbell, T. Halping, H. Proper: Conceptual Schemas with Abstractions: Mak-
ing Flat Conceptual Schemas More Comprehensible. DKE, 20(1), pp.39-85, 1996

Querying with Preferences in a Digital Library�

Nicolas Spyratos1 and Vassilis Christophides2

1 Laboratoire de Recherche en Informatique,
Université Paris Sud,

91405 Orsay Cedex, France
spyratos@lri.fr

2 Institute of Computer Science,
Foundation for Research and Technology-Hellas,

P.O. Box 1385, 71110 Heraklio, Greece
christop@ics.forth.gr

Abstract. We consider a collection of federated sources on the Web, and
a community of users who are interested in documents residing in one or
more of those federated sources. The search for documents of interest is
supported by a mediator that we call a digital library. The library simply
indexes all documents that are made available to users by the federated
sources. When a user addresses a query to the library, the library returns
the URLs of documents satisfying the query. In such a context, one of
the factors influencing user satisfaction is the size of the answer set,
in particular when it is too small (few or no documents) or too large
(several hundreds or thousands of documents). In this paper, we address
the problem of answer sets that are too large, and we call personalized
query a usual query together with (a) an upper bound on the number
of documents returned, and (b) a set of preferences as to the order in
which the returned documents should be presented to the user; both these
parameters are defined by the user online, during query formulation.
The main contribution of the paper is to propose a framework in which
the problem can be stated formally, and a method for the evaluation of
personalized queries.

1 Introduction

As information becomes available in increasing volumes, and to growing numbers
of users, the shift towards a more user-centered access to information is becoming
an important issue. As a consequence, support of personalized user interaction is
an important concern in the design of advanced information systems in general
and of e-services in particular [3, 4, 9].

Personalization in an interactive information system is about building a mean-
ingful one-to-one relationship by understanding the needs of each individual
user. Personalization can involve either adapting the user interface or adapting

� This work is partially supported by the EU Network of Excellence in Digital Libraries
(Delos NoE-6038-507618).

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 130–142, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Querying with Preferences in a Digital Library 131

the content to the needs or preferences of a specific user. Both aspects have re-
ceived increasing attention during the past few years. In this paper we propose
to study a specific aspect of content adaptation, namely query personalization,
in the context of a digital library.

We view a digital library as a mediator over a collection of federated sources
that store electronic documents of various kinds. The sources make available (i.e.,
accessible) some or all of their documents to a community of users (the library
subscribers). Users address their queries to the library, in search of documents
of interest residing in one or more federated sources. Access to documents is
done transparently – that is, the users are not aware of the sources in which
the documents reside. In such a context, one of the factors that influences user
satisfaction is the size of the answer set, in particular when it is too small (few
or no documents) or too large (several hundreds or thousands of documents).

In this paper, we address the problem of answer sets that are too large, and
we call personalized query a usual query q together with (a) an upper bound k
on the number of documents returned and (b) a set of preferences as to the order
in which the returned documents should be presented; both these parameters are
defined by the user online, during query formulation. In other words, the query q
specifies (intentionally, as usual) a set of documents which is unordered, whereas
the preferences and the bound k select an ordered subset of desired size. The
main contribution of the paper is to propose a framework where the problem
can be stated formally, and a method for the evaluation of personalized queries.

Regarding related work, first we note that personalization in electronic pub-
lishing mainly addresses three items:

– Notification: The user’s need to receive timely and accurate information
relevant to his interests.

– Query personalization: The user’s need to be adequately supported during
search of archive information.

– Recommendation: The publishers’ need to proactively disseminate informa-
tion only to interested users.

An essential feature of personalization techniques for information access is the
capability to learn, autonomously and automatically, user interests and prefer-
ences from the observation of user’s behavior. In other words, adaptability. This
adaptability is based on various machine learning techniques and provides the
means to unobtrusively build user profiles [5, 12]. However, profiles contain infor-
mation describing past interests or preferences of the user. In this paper, we are
interested in query personalization based on current interests and preferences of
the user, expressed online, during query formulation.

The possibility for the user to express preferences online, during query formu-
lation, is an aspect of personalization that has received increasing attention over
the past few years. The main reason for this increasing attention is that tradi-
tional systems require the user to specify the information to be retrieved exactly,
allowing no provision for “customizing” the answer set. In the area of databases,
two different approaches of query personalization are currently being pursued:

132 N. Spyratos and V. Christophides

qualitative [6, 7, 11, 13, 15, 17] and quantitative [1, 14, 16]. A fundamental study
concerning general preference relations is presented in [2].

In the qualitative approach, the preferences among tuples in the answer to a
query are specified directly, typically using so-called preference relations. These
are binary relations over tuples, satisfying certain natural conditions such as
transitivity and reflexivity. In the quantitative approach, preferences are specified
indirectly using scoring functions that associate a numeric score with every tuple
of the query answer. Once scores are assigned, a tuple t is preferred to a tuple
t′ if the score of t is higher than the score of t′. Very roughly, the difference
between the two approaches is described by the following examples:

– Qualitative Approach: I prefer Comedies to Thrillers
– Quantitative Approach: I like Comedies very much; I like Thrillers a little

The qualitative approach seems to be more general than the quantitative one,
since one can define preference relations in terms of scoring functions, whereas
not every (intuitively plausible) preference relation can be captured by scoring
functions. The approach that we propose in this paper is related to the qualitative
approach, and is in fact motivated by current research in that area. It also draws
on ideas and results from [19] and [20].

A notable feature of the qualitative approach is the clear separation of the
formal specification of preferences from their embedding in the query language,
which allows abstract properties of preferences to be studied separately from
query evaluation (similarly to the separation between relational algebra and its
embedding into the algebraic query language, in the relational database model).

The remainder of the paper is organized as follows. In Section 2 we define the
model of digital library that we use, and recall some basic definitions from [18].
In Sections 3 and 4 we define formally a personalized query and its answer,
respectively, and in Section 5 we outline an algorithm for the evaluation of
personalized queries. Finally, in Section 6 we discuss ongoing research and offer
some concluding remarks.

2 Digital Libraries

A digital library serves a network of federated sources that store electronic doc-
uments of various kinds. The sources make available (i.e., accessible) some or
all of their documents to a community of users (the library subscribers). Users
address their queries to the library, in search of documents of interest residing
at the local repositories of one or more federated sources. The digital library
acts as a mediator, supporting transparent access to all shareable documents by
library users.

We emphasize the fact that the library stores no documents at its local reposi-
tory: the documents stay at the sources, and the library merely acts as a mediator
to access them. We note that since the documents accessible through the library
reside at the local repositories of the participating sources, the local repositories

Querying with Preferences in a Digital Library 133

can be seen collectively as a single distributed repository of documents spread
over the network [18].

In order to carry out its basic function (i.e., that of a mediator), the library is
required to support two basic services: registration of documents that the sources
are willing to make available to library users, and querying for documents of
interest by the library users. In the remainder of this section we describe these
services in more detail.

2.1 Registration

When a source wishes to make a document shareable (i.e., accessible) to library
users it must register the document at the library. To do so the source must
provide two items to the library:

– the document identifier (indispensable for document registration)
– the document description (optional)

We assume that the document identifier is just the URL where the document
can be accessed by library users. Clearly, as the document identifier is the only
means for accessing the document, no document can be registered unless its
identifier is provided by the source to the library. This is why providing the
document identifier is indispensable for document registration. Hereafter, in our
examples, for convenience of notation we use integers as document identifiers
instead of URLs.

As for document description, we consider only content description and we as-
sume that such a description is provided by the source in the form of a set D of
keywords, or terms. For example, if D = {QuickSort, Java} this suggests a docu-
ment about the quicksort algorithm written in Java. We make no assumption as
to the provenance of the terms in the description of the document. These terms
may or may not be taken from a controlled vocabulary, and they may be given
manually or extracted from the document content using some document mining
algorithm. Moreover, some sources may simply provide the document identifier
without providing any content description. It will then be the job of the library
to provide such a description (manually or using some mining algorithm). Fi-
nally, it may be the case that the source does provide a content description but
the library “augments” this description to provide a finer one for its users (see
[18] for more details).

Therefore registration of a document at the library requires the document
identifier, say i, and a set of terms D (defined as explained above). The actual
registration of the document by the library is done by storing a pair < i, t > in
the library repository, for each term t in D. Thus if i is the document identifier,
and D = {QuickSort, Java} is the document description, then the library will
store two pairs: < i,QuickSort> and < i,Java>. The set of all such pairs < i, t >
for all registered documents is what we call the library directory, or simply
directory (the well known Open Directory of the Web is an example of such a
directory). Clearly the directory is a binary relation between document identifiers
and terms. As such, it can also be seen as a formal context [8].

134 N. Spyratos and V. Christophides

Each term in the directory has an extension, and each document identifier has
a description (also called its intension, or its index). The extension of a term t,
denoted by ext(t), is the set of all document identifiers i such that < i, t > is in
the directory; and the description of a document i, denoted descr(i), is the set
of all terms t such that < i, t > is in the directory. More formally, we have the
following definitions:

ext(t) ::= {i :< i, t > is in the directory }
descr(i) ::= {t :< i, t > is in the directory }
We assume that if a term does not appear in the directory then its extension

is empty. Similarly, we assume that if a document identifier does not appear in
the directory then its description is empty.

We note that, from a mathematical point of view, ext and descr are set-valued
functions, and that they may change over time as the directory is updated. More-
over, either of these functions is sufficient to define the directory, and conversely
the directory is sufficient to define each of these functions.

2.2 Querying

Library users access the library in search of documents of interest, either to
use them directly (e.g., as learning objects) or to reuse them as components in
new documents that they intend to compose (see [18]). Search for documents of
interest is done by issuing queries to the library, and the library uses its directory
to return the identifiers (i.e., the URLs) of all documents satisfying the query.

The query language that we use is a simple language in which a query q is
just a Boolean combination of terms:

q ::= t | q1 ∧ q2 | q1 ∨ q2 | q1 ∧ ¬q2

The answer to a query q is defined recursively as follows:
if q is a term then ans(q):=ext(q)
else begin if q=q1 ∧ q2 then ans(q):=ans(q1)∩ans(q2);

if q=q1∨q2 then ans(q):=ans(q1)∪ans(q2);
if q=q1∧¬q2 then ans(q):=ans(q1)\ans(q2)

end

In other words, to answer a query q, the library simply replaces each term
appearing in q by its extension from the directory, and performs the set theoretic
operations corresponding to the Boolean connectives.

3 Personalized Queries

In our approach, a personalized query Q consists of three parts:

– a usual query q, e.g., QuickSort ∨ Java,
– an integer k, expressing the maximum number of documents to be returned,
– a set of preferences, e.g., “I prefer documents about QuickSort to those about

Java”

Querying with Preferences in a Digital Library 135

In this paper, we model the set of preferences as a pre-order over terms,
i.e., as a binary relation over terms which is reflexive and transitive. These two
properties of preferences seem to be reasonable in our context, although no strong
argument can be presented in their favor; Fishburn [10], for example, considers
non-transitive preferences in decision theory .

In contrast, a strong argument can be made against including anti-symmetry
as a property of preferences. Indeed, preferring QuickSort over Java and Java
over QuickSort doesn’t make QuickSort equal to Java but simply equivalent to
Java (with respect to user preferences).

In fact, in our context, equivalence of terms is a highly desirable property, as
it implies the existence of one or more alternatives. For example, assume that
QuickSort is equivalent to Java (according to the preferences declared by the
user), and that documents described by one or the other term are the most pre-
ferred by the user. If no document described by QuickSort is currently available
in the directory, then the system can return any document described by Java as
an alternative.

Therefore, we allow the user to declare two kinds of statements over terms:
alternatives and preferences. Alternatives are statements of the form t ≡ t′,
meaning that the user is equally interested in documents described by either t
or t′, while preferences are statements of the form s ≤ s′ meaning that the user
prefers documents described by s (or any term equivalent to s) to documents
described by s′ (or any term equivalent to s′). In what follows we assume that
alternatives form an equivalence relation over terms, i.e., a binary relation that is
reflexive, symmetric and transitive. We note that this assumption is made here in
order to simplify the presentation. However, the set of user statements declaring
alternatives do not necessarily define an equivalence relation over terms. In case
they do not, one has to consider the minimal equivalence relation implied by
the set of user statements (and this is obtained by computing the closure of
the set of user statements under reflexivity and transitivity). We also note that
synonyms are alternatives as well, and are captured by the equivalence relation
just defined, as long as they are declared, e.g., Databases ≡ DBs. In other words,
alternatives extend synonyms in the following sense: if two terms are synonyms
then they are alternatives. Clearly the opposite is not true.

Now, if we consider the equivalence classes of terms formed by the alterna-
tives, then the preference relation becomes a partial order over those equivalence
classes. In what follows, in order to further simplify the presentation, we shall
consider the terms of the directory up to equivalence. So when we speak of a
term, we shall actually mean the equivalence class of that term (with respect to
the equivalences declared by the user).

Following our discussion so far, we can define a personalized query, formally,
as follows:

Definition 1. Personalized Query
A personalized query over the library directory is a triple Q = (q, k, ≤), where q
is a Boolean query, k is a positive integer, and ≤ is a partial order relation over
terms, called the preference relation.

136 N. Spyratos and V. Christophides

In the above definition, we note that the Boolean query q can be evaluated
as described in the previous section, and that the evaluation returns a set of
documents, which we shall call Ans(q). In a traditional system, what is returned
to the user is the set Ans(q). In our approach, however, as explained in the
introduction, what is returned to the user is not necessarily the whole set Ans(q)
but a subset thereof, of size at most k; and moreover, the subset returned to the
user is ordered according to the preference relation. So, in the next section, we
explain how one orders the set Ans(q) based on the preference relation, and how
one selects the subset of Ans(q), of size k, to be returned to the user.

We also note that the terms appearing in the preference relation may not
appear in the query q. This means that it is perfectly possible to ask for all doc-
uments concerning Quicksort and Java, but preferring those concerning Theory
to those concerning Applications.

4 Answering a Personalized Query

The first thing to note is that the preference relation is defined over terms,
and not over documents. Therefore we use the preference relation to define a
pre-order � over documents as follows.

Definition 2. Ordering Documents
Let d, d’ be two documents. We define d � d′ iff ∀t ∈ descr(d)∃t′ ∈ descr(d′)t ≤ t′

It is easy to see that � is reflexive and transitive but not anti-symmetric (as
two documents can have the same description, while being different documents).
Therefore we define two documents d, d′ to be equivalent, denoted by d ≡ d′,
iff d � d′ and d′ � d. With this definition at hand, the preorder � becomes a
partial order over equivalence classes of documents.

Proposition 1. The relation � is a partial order over (equivalence classes of)
documents.

In the following we shall talk about documents up to equivalence; in other words,
we shall not distinguish between documents that are equivalent. Therefore d � d′

will mean that the equivalence class of d is less than or equal to the equivalence
class of d′. With this partial order at hand, we now proceed to define the answer
to a personalized query.

Let Q = (q, k, ≤) be a personalized query and let Ans(q) be the answer to
the (usual) query q. What we want to define as the answer to Q is a subset of
the ordered set (Ans(q), �), having k documents listed in increasing order with
respect to � (i.e., in decreasing order of preference). This subset, denoted by
Ans(Q), will be returned to the user as the answer to the personalized query.
To make this intuitive definition more formal, we first need to introduce some
auxiliary definitions and notation.

We call a document of Ans(q) active if it appears in some comparison under
�, and inactive otherwise. Roughly speaking, active documents are those that

Querying with Preferences in a Digital Library 137

can be ordered with respect to other documents (as they participate in at least
one comparison), while inactive documents are those that cannot be ordered. As
a consequence, the set Ans(q) is partitioned into two sets, denoted Act(q) and
Inact(q), of active and inactive documents respectively. Our approach to answer-
ing the personalized query Q uses only the set of active documents, so hereafter
whenever we say “document” we mean “active document”. In a nutshell, our
approach can be described as follows:

1. Define a partition of the set Act(q) into blocks, and a linear ordering of the
blocks, satisfying the following properties:
(a) Each block consists of non-comparable documents
(b) The first block contains the most-preferred documents
(c) For each block B other than the first, and for each document in B, there

is a more preferred document in the previous block
2. Start presenting each block of documents to the user, one by one, in their

linear order
3. If the number of all documents in Ans(q) is less than or equal to k then show

all documents, else terminate the presentation of documents after showing
the k-th document (this can happen before all documents of a block have
been shown to the user)

To define our approach formally we need some auxiliary definitions and nota-
tion that we adapt from [8]. First, let us call path from a document d to a docu-
ment d′ any sequence of pairs of the form < d, d1 >, < d1, d2 >, . . ., < dn−1, dn >,
< dn, d′ > such that d � d1, dn � d′, and di−1 � di for i = 2, . . ., n. The integer
n + 1 is called the length of the path, and it should be clear that there may be
zero, one or more paths from d to d′.

Roughly speaking, the partition of the set Act(q) that we define next uses the
set B0 of all documents that are minimal with respect to � as the basic block.
The definition of each other block Bi of the partition relies on the notion of
distance of a document from B0. The distance of a document d′ from B0 is defined
to be the length of a longest path from a document d to the document d′, when d
ranges over all documents of B0; if d′ belongs to B0 then this distance is defined
to be equal to 0. The block Bi is defined to be the set of all documents that
are at distance i from B0. The following theorem (which is our main theorem)
states formally the definition of the partition, as well as its basic properties.

Theorem 1. Partitioning the Set Act(q)
Let B0 be the set of all documents that are minimal with respect to �, and let m
be the length of a longest path from B0 to a maximal document of Ans(q). For
i = 1, . . ., m, define the set Bi as follows: d′ is in Bi iff d′ is at distance i from
B0. Then the following statements hold:

(a) The collection {B0, B1, . . ., Bm} is a partition of Act(q).
(b) In every block Bi no two documents are comparable, i = 0, 1, . . ., m.
(c) For every document d′ in Bi there is a document d in Bi−1 such that d � d′,
i = 1, 2, . . ., m.

138 N. Spyratos and V. Christophides

Proof.
(a) It suffices to observe that every document will belong to some Bi (because
it appears in at least one comparison) and that no document can belong to two
different Bis (as its distance from B0 is unique). Therefore, the Bis are mutually
disjoint and their union is Act(q); in other words, the collection of all Bis is a
partition of Act(q).
(b) Suppose now that there are documents d, d′ in Bi such that d � d′. As the
distance of d from B0 is i, it follows that the distance of d′ from B0 is i + 1, a
contradiction.
(c) For every document d′ in Bi there is a longest path p from some document
of B0 to d′. Let d be the predecessor of d′ in p. Clearly, the sub-path of p ending
in d is a longest path from B0 to d (otherwise, p is not a longest path to d′, a
contradiction). It follows that d is in Bi−1 and that d � d′.

We now define a partial order over sets of documents and show that the sequence
B0, B1, . . ., Bm is actually a chain in that partial order. This is one of the possible
orders one can define over sets of documents, which are induced by the partial
order � over documents (see [18, 20] for more details).

Definition 3. Ordering Sets of Documents
Let D, D′ be two sets of documents. We define D � D′ iff ∀d′ ∈ D′ ∃d ∈ D such
that d � d′

Clearly, the relation � is reflexive and transitive but not anti-symmetric; hence
it is a pre-order over sets of documents. However, it is not difficult to see that
if each set of documents consists of mutually incomparable documents, then �
becomes anti-symmetric, and thus a partial order (see also [20]). Now, each block
Bi of the partition defined earlier does have this property (see Theorem 1(b)),
and thus � is a partial order over the partition {B0, B1, . . ., Bm}. Moreover,
in view of Theorem 1(c), we have B0 � B1 � . . . � Bm. In other words, the
sequence B0, B1, . . .Bm is a chain in �; hence the following proposition.

Proposition 2. Ordering the Partition of Act(q)
The relation � is a partial order over sets of non comparable documents, and
the sequence B0, B1, . . ., Bm is a chain in �, i.e., B0 � B1 � . . . � Bm

Thus the sequence B0, B1, . . ., Bm is actually the right sequence for presenting
documents to the user, in the sense that each document in Bi is less preferred
than some document of Bi−1. Of course, there may be documents in Bi−1 that
have no less-preferred documents in Bi. However, this doesn’t go against the
intuition “most-preferred documents first”.

In the following section we present an algorithm for evaluating the answer to
a personalized query Q.

5 The Evaluation Algorithm

Our algorithm constructs the blocks of the sequence B0, B1, . . ., Bm, one by one,
while keeping track of the number of documents produced. If the size of Act(q)

Querying with Preferences in a Digital Library 139

is less than or equal to k then all blocks are constructed. Otherwise computation
should normally terminate when the k-th document is produced – something
that could happen before all documents of the k-th document’s block have been
produced. However, in the following definition of answer to Q, in order to simplify
matters, we include in the answer all documents of the block containing the k-th
document. We use the notation card(X) to denote the cardinality of a set X of
documents.

Definition 4. The Answer to a Personalized Query
Let Q = (q, k, ≤) be a personalized query. The answer to Q is the sequence of
blocks B0, B1, . . ., Bj, 0 ≤ j ≤ k, defined as follows:
if card(Act(q)) ≤ k then the answer is B0, B1, . . ., Bm

else the answer is the sequence B0, B1, . . ., Bj such that
card(B0) + . . . + card(Bj−1) ≤ k ≤ card(B0) + . . . + card(Bj−1) + card(Bj)

Our algorithm is best understood if we view the pair G = (Act(q), �) as a
graph, defined as follows:

– the documents in Act(q) are the nodes of G
– there is an arrow from document d to document d′ iff d � d′

We note that, as � is a partial order, this graph is acyclic.
To keep the presentation of the algorithm as simple as possible, we assume

the following:

1. There is a function that takes as input the personalized query Q = (q, k, ≤),
computes successively Ans(q), Act(q), G = (Act(q), �) and the length m of
a longest path from the set of minimal documents to a maximal document.
In the presentation of the algorithm we assume that the set Act(q) is not
empty, i.e., the graph G has at least one edge.

2. There is a function card that takes as input a set of documents B = {d1,
d2, . . . , dj} and computes the number of documents in B, as follows:

card(B) = card(d1) + card(d2) + . . . + card(dj)

We recall that documents are considered up to equivalence, hence card(d)
returns the number of documents in the equivalence class of d.

Algorithm PERSO
Input : A personalized query Q = (q, k, ≤)
Output: The answer to Q

Method
count:=0; i:=0
repeat Bi:={all roots of G}; output Bi;

count:= count + card(Bi);
remove from G all nodes of Bi and all edges
emanating from nodes of Bi;
i:=i+1

until G = ∅ or k ≤count;

140 N. Spyratos and V. Christophides

The correctness of this algorithm follows rather easily from Theorem 1, and
our preceding discussions. Complexity and performance issues, however, lie out-
side the scope of the present paper, and will be discussed in the full paper.

6 Concluding Remarks

We have presented an approach to defining and evaluating personalized queries in
the context of digital libraries. A personalized query is defined as a usual Boolean
query together with an upper bound on the number of documents returned
and a set of preferences and alternatives as to the order in which the returned
documents should be presented; both these parameters can be defined by the
user online, during query formulation. We have also presented an evaluation
algorithm for answering personalized queries.

However, the research reported in this paper is preliminary, and much work
remains to be done in support of the proposed approach, in particular with re-
spect to the implementation of the evaluation algorithm and its performance.
Once this is done, our plan is to use the query evaluation algorithm for imple-
menting the following two-step interactive scheme for query personalization:

Step 1
The user submits a query q and the system returns an integer, which is the size
of the answer set (or an estimate thereof);

Step 2
If the user is satisfied then the system returns the actual answer set; else if the
user judges the size of the answer set too large then he/she can “personalize”
the query (by declaring an upper bound k plus preferences and alternatives);
the system then returns the desired ordered subset of the answer set.

Concerning the implementation of the algorithm, the choice of an appropri-
ate representation for the library directory seems to be essential. The obvious
candidates are the binary relation < doc-id, term > and the set-valued functions
ext and int defined earlier (see Sect. 2).

The influence of structure over the set of terms may also prove significant. In-
deed, although no assumption of structure was made here over the set of terms, in
many applications the terms come from a controlled vocabulary, possibly struc-
tured as taxonomy according to a subsumption relation (see [18]). Structuring
the set of terms will have an influence on the evaluation of a personalized query
Q = (q, k, ≤) at two levels. First, on the evaluation of the Boolean query q, as
the extension of a term will now include the extensions of all its sub-terms; and
second, on the preferences, as we may or may not have the ordering of two terms
to imply a “similar” ordering on the sets of their sub-terms.

Concerning performance, a detailed complexity analysis of the evaluation al-
gorithm is necessary. This analysis should take into consideration several factors,
including the size of the set of preferences (i.e., the number of terms appearing

Querying with Preferences in a Digital Library 141

in preferences), the size of the query q (i.e., the number of terms appearing in
q), the bound k, the size of the set Ans(q), and the number of active documents.

A final remark concerns the inactive documents. Indeed, the answer to a per-
sonalized query as defined here is based solely on the active documents. However,
when the set of active documents turns out to be relatively small (with respect
to the bound k) then one may wish to include some inactive documents in the
answer as well. In this respect, inactive documents whose description contains at
least one term appearing in the preference relation should naturally be preferred
to the remaining inactive documents (i.e., those whose description contains no
term appearing in the preference relation).

Summarizing, further research and extensive experimentation is needed to
evaluate the proposed approach and query-answering algorithm, thus validating
the choices made here.

References

1. R. Agrawal and E.L. Wimmers. A Framework for Expressing and Combining
Preferences. In Proceedings of the ACM-SIGMOD International Conference on
Management of Data, Dallas, USA, pages 297–306, 2000.

2. H. Andreka, M. Ryan, and P-Y. Schlobbens. Operators and Laws for Combining
Preferential Relations. Journal of Logic and Computation, 12(1):13–53, 2002.

3. R. Brafman, J. Doyle, U. Junker, and P. Pu. Tutorial on Preference Models and
Application, 2005. 19th International Joint Conference on Artificial Intelligence,
IJCAI.

4. S. Braynov. Personalization and Customization Technologies, 2003. Sem-
inar on Personalization and Customization in E-Commerce, Available at:
http://www.cs.buffalo.edu/˜ sbraynov/seninar2003/papers/Personalization.pdf.

5. L. Chen and P. Pu. Survey on Preference Elicitation Methods, 2004. Ecole Po-
litechnique, Federale de Lausanne (EPFL), Switzerland.

6. J. Chomicki. Querying with Intrinsic Preferences. In Proceedings of the 8th Inter-
national Conference on EDBT, Prague, Czech Rep., pages 34–51, 2002.

7. J. Chomicki. Preference formulas in relational queries. ACM Transactions on
Database Systems, 28(4):427–466, 2003.

8. B.A. Davey and H.A. Priestly. Introduction to Lattices and Order (2nd edition).
Cambridge Mathematical Textbooks. Cambridge University Press, 2002.

9. J. Doyle and U. Junker. Tutorial on Preferences, 2004. 19th AAAI National
Conference on Artificial Intelligence.

10. P.C. Fishburn. Non-transitive Preferences on Decision Theory. Journal of Risk
and Uncertainty, 4:113–134, 1991.

11. K. Govindarajan, B. Jayaraman, and S. Mantha. Preference Queries in Deductive
Databases. New Generation Computing, 19(1):57–86, 2000.

12. S. Holland, M. Ester, and W. Kießling. Preference Mining: A Novel Approach on
Mining User Preferences for Personalized Applications. Technical report, Institute
of Computer Science, University of Augsburg, Germany, 2003.

13. S. Holland and W. Kießling. Situated Preferences and Preference Repositories
for Personalized Database Applications. In Proceedings of the 23rd International
Conference on Conceptual Modeling, ER, Shanghai, China, pages 511–523, 2004.

142 N. Spyratos and V. Christophides

14. V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A system for the
efficient execution of multiparametric ranked queries. In Proceedings of the ACM-
SIGMOD International Conference on Management of Data, Santa Barbara, Cal-
ifornia, page 259269, 2001.

15. W. Kießling. Foundations of Preferences in Database Systems. In Proceedings of
the 28th International Conference on Very Large Databases, Hong Kong, China,
pages 311–322, 2002.

16. G. Koutrika and Y. Ioannidis. Personalization of Queries in Database Systems.
In Proceedings of the 20th International Conference on Data Engineering, Boston,
USA, pages 597–608, 2004.

17. M. Lacroix and P. Lavency. Preferences: Putting More Knowledge Into Queries.
In Proceedings of the International Conference on Very Large Databases, pages
217–225, 1987.

18. Ph. Rigaux and N. Spyratos. Metadata Inference for Document Retrieval in a
Distributed Repository (Invited Paper). In Proceedings of the 9th Asian Computing
Science Conference (ASIAN’04) (LNCS 3321), Chiang-Mai, Thailand, 2004.

19. N. Spyratos. A Functional Model for Dimensional Data Analysis. Course notes
2001-2004, LRI Research Report, To appear.

20. N. Spyratos. Decision Support Problems. Course notes 2001-2004, LRI Research
Report, To appear.

An Enhanced Spreadsheet Supporting
Calculation-Structure Variants, and Its
Application to Web-Based Processing

Aran Lunzer1 and Kasper Hornbæk2

1 Meme Media Laboratory, Hokkaido University, Sapporo 060-8628, Japan
2 Department of Computer Science (DIKU), University of Copenhagen,

2100 Copenhagen Ø, Denmark

Abstract. This paper reports our work towards an end user environ-
ment for building and experimenting with federations of Web-based pro-
cessing resources. We present the key concepts and an initial interface for
the RecipeSheet, a spreadsheet-like environment with explicit support for
creating and comparing alternative scenarios, based on the principles of
subjunctive interfaces. A key feature of the RecipeSheet is that alterna-
tive scenarios can differ in terms of the processing used to calculate cells’
values; in the context of the Web, this is useful for gathering and com-
paring results from alternative resources that offer nominally the same
processing. We show various usage cases for our prototype, including an
example from Web-based bioinformatics.

1 Combining Web-Based Resources

One characteristic of what many people now refer to as ‘Web 2.0’ [12] is the
offering of Web resources not through monolithic, one-stop sites but as fine-
grained service-providing components. Components from different providers can
be assembled to create applications offering useful new services. An early example
was the BookBurro agent [1], that lists the prices of a given book in a number
of online stores. More complex is Google Maps [4], that draws together a wide
range of resources such as shop and business listings, tourism information, and
driving directions.

As well as integration by professional Web-application writers to produce so-
phisticated, polished applications such as Google Maps, the component-based
approach in theory opens the way for end users to assemble their own ad-
hoc combinations of resources to serve specialised needs. But supporting non-
specialist programmers in achieving this kind of programming task is still a
formidable challenge.

One domain in which this challenge is reduced, both by being able to cir-
cumscribe the variety of resources to be handled and by the fact that many
of the target users are already comfortable programming in languages such as
Perl, is that of Scientific Workflow (recently surveyed in [18]). Scientific workflow
systems allow scientists to create, run and share data-analysis and knowledge-
discovery ‘pipelines’ serving their individual interests. However, the emphasis

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 143–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

144 A. Lunzer and K. Hornbæk

in most of these systems is on creating multi-step processes that can then be
run repeatedly without the intervention of the user. Some systems have spe-
cialised facilities for computational steering, but there is little general support
for interactively exploring alternative results.

Lack of support for exploring alternatives is a common characteristic of to-
day’s computer applications, to such an extent that Terry and Mynatt [15] speak
of a prevalent and inconvenient ‘single-state document model’. For some years we
have been investigating how to improve on this situation by building interfaces
that support the setup and use of alternative scenarios side by side [9, 10, 11].

We see an especially strong need to support the use of alternatives when work-
ing with Web-based resources. The Web offers multiplicity not just with respect
to book stores, but for many kinds of information and processing resources. Hav-
ing access to multiple resources can give various potential benefits: BookBurro
illustrates the power of comparing resources against each other; resource-access
redundancy can improve overall reliability of access; and complementary re-
sources may add up to a breadth of information that is not available from any
single location. In general, the Web is a domain in which users may sometimes
want to make multiple requests of a single resource, and sometimes want to send
the same request to alternative resources.

What kind of environment would be suitable for building custom applications
within this domain? We believe that an adapted form of spreadsheet may pro-
vide the necessary support. Spreadsheets have proved popular with end users,
and features such as tabular layout and the use of relative operand addressing
help users to set up related calculations. The spreadsheet approach has already
been applied to various specialised domains in which users want to build and
manipulate processing flows side by side, such as image processing [8] and data
visualisation [2, 5]. Each domain imposes requirements in terms of handling the
appropriate data types and processing; the same will be true of the Web. In ad-
dition, as argued above, we believe that the adapted spreadsheet must support
flexible interactive exploration of alternatives.

1.1 Data and Processing in a Web-Resource Spreadsheet

Whereas scientific workflow systems are concerned with the communication and
processing of (potentially huge) files or tables of data, the bulk of day-to-day
communication with Web services occurs by transferring chunks of XML. So a
basic requirement is that our spreadsheet support the creation, communication
and processing of XML (including XHTML, and thus Web pages). There should
also be straightforward ways to extract and work with simple string and nu-
merical values that the XML may hold. If the need does arise to process large
data sets, this should be achieved by storing them in files and passing URI-style
references between processing components, rather than by channelling the data
through the spreadsheet itself.

The spreadsheet must offer facilities to invoke processing resources that are
offered over the Web. One form of resource is a Web service, callable through an
XML-based protocol such as SOAP. Another is a Web application that has been

A Spreadsheet Supporting Calculation-Structure Variants 145

‘wrapped’, meaning that facilities designed for interactive use through a Web
browser can instead be used through a programmatic interface. Recent surveys
of Web-application wrapping include [6, 7]; in our own work on C3W [3] we have
investigated how simple applications may be wrapped interactively by end users.

The system must also let the user define how data is passed between processing
resources. In the simplest case, data is just copied from from one place to another;
in many of today’s scientific workflow systems this is specified using a wiring
diagram. However, it is not always the case that data produced by one resource
is in exactly the form needed as input for another. If just a standard kind of
conversion is needed, such as between number and string formats, this can be
achieved with a lightweight approach such as the ‘shim services’ available for
the Taverna workflow system [13]. More generally, a user will need to interpose
some specialised ‘glue code’ to perform the necessary data manipulations.

Offering a suitable language for the glue code depends on what operations
are needed. For simple manipulation of strings and numbers, the kind of for-
mula language found in a standard spreadsheet may suffice. For more complex
operations, such as iterative calculations or the analysis of strings, there is still
no single language that clearly offers both expressibility and ease of use. Among
string-processing languages, IBM’s REXX remains popular for its ease of use,
while Perl has superior power based on its regular-expression support. Languages
such as XQuery offer the facilities needed for processing XML, but are hard to
master. For the time being, it appears that our system must support several glue
languages and let its users choose among them.

As noted above, in the domain of Web-based processing a user might invoke
multiple resources for the same request, or might send multiple requests to a
single resource. This suggests that the two situations should be supported in
similar ways. But spreadsheets typically make a clear distinction between cell
values and their processing; while the values may be changed easily (such as
by pasting a new set of values onto a range), the processing elements – that
is, the formulas – are relatively static. Part of the issue is that for reasons of
space efficiency and tidiness most spreadsheet interfaces show either the cells’
values or their connections, but not both. One exception in the commercial world
was Spreadsheet2000 [17], where the cells and their derivation connections were
all made visible. We believe that a similar approach may be appropriate for a
Web-resource spreadsheet.

1.2 Interactive Exploration of Alternatives

A key property of the traditional spreadsheet is that alternative derivations,
based on variation in values or in formulas, can be laid out side by side, typi-
cally in neighbouring rows or columns. This sets up a long-lived view in which
alternatives can be calculated and compared. If a new set of data is loaded into
the sheet, the equivalent comparisons for that data conveniently come into view.

However, neither this kind of variation built into a sheet, nor the availability
of ‘scenario management’ facilities for evaluating and displaying a batch of al-
ternatives, constitutes good support for exploring alternatives interactively. For

146 A. Lunzer and K. Hornbæk

exploring the effect of alternative data values, some researchers have proposed
using interaction widgets such as sliders to set cells’ values, letting users apply
incremental, reversible adjustment [16, 14]. But in this approach the sheet’s cell
values are constantly being overwritten, denying the possibility of side-by-side
comparison. Interactive exploration based on changing formulas, or adding even
simple extra calculation steps, has received little attention in existing work.

In addition, we would like to overcome the problem that a spreadsheet’s lay-
out freezes into the sheet one particular dimension of side-by-side comparison;
to explore a different dimension may require completely rebuilding the sheet.
Our goal is to let users switch easily between comparisons on any of several
dimensions.

We report on the design and implementation of a prototype RecipeSheet, a
spreadsheet-like environment that can be used to access, combine and explore
Web resources. In the next section we demonstrate the RecipeSheet’s basic fea-
tures, then in Sect. 3 we describe the abstraction, called a recipe, that underlies
its processing. Finally, Sect. 4 includes examples of the prototype being put to
use on Web-based processing.

2 A Spreadsheet with Built-In Support for Alternatives

The RecipeSheet interface is based on the principles of subjunctive interfaces [9,
10, 11], our approach to supporting users in working with alternative scenarios.
We first describe these principles, then show examples of multiple scenarios in
the RecipeSheet.

2.1 Principles of Subjunctive Interfaces

The purpose of a subjunctive interface is to support the user of a computer
application in viewing and manipulating many alternative application scenarios
in parallel. The key features of an application with a subjunctive interface are
as follows:

Multiple scenarios can co-exist. At any given time the application can sup-
port multiple scenarios, which may be created at the request of a user or
automatically by the application. The scenarios typically deal with mutually
incompatible application states. For example, when asked to choose a single
value for some application input, a user who is equally interested in several
values may request the creation of a separate scenario to cater for each value.

The user can view scenarios side by side. The application displays all
currently existing scenarios side by side, in a way that helps the user to
compare them, or to examine each scenario individually.

The user can adjust scenarios in parallel. The user can make changes to
many scenarios at the same time, for example by adjusting an input that is
shared across scenarios and seeing immediately how this affects the outcome
of each one.

A Spreadsheet Supporting Calculation-Structure Variants 147

2.2 Multiple Scenarios in a RecipeSheet

In a RecipeSheet, alternative scenarios arise from specifying variants for cell
values or for the processing between cells.

Figures 1 and 2 show a simple recipe sheet with six cells, one of which is
derived from the values in the other five. Figure 1 shows the user starting from
a single-scenario state, where each cell contains a single value, and editing the
contents of the fontSize cell. As well as letting the user edit the existing value, the
interface allows specification of variants for that value, causing new scenarios to
be created. Say that some cell holds a value v0, currently being used in scenarios
s1 and s2. If the user edits that value and specifies new variants, then for each
variant vi, scenarios s1 and s2 will be copied to create two new scenarios, each
with vi as the value for that cell. In Fig. 1 the user edits the value 14, adding
values 18 and 20 that then appear in two new scenarios.

Scenarios are shown side by side using a technique that we call widget multi-
plexing. A widget multiplexer is a user-interface element that handles the presen-

Fig. 1. Creating alternative scenarios on a RecipeSheet. The page cell shows a Web
page formatted according to the style settings in the cells font, fontSize, backColour
and textColour. The user edits the value in fontSize, specifying two additional values by
using the reserved & symbol. This results in creation of two extra scenarios, displayed
alongside the first.

148 A. Lunzer and K. Hornbæk

Fig. 2. User-chosen combinations of cell values. Having added alternative values to
each of the style-settings cells, the user has manipulated the markers in the backColour
and textColour cells to set up four scenarios with alternative colour combinations. All
scenarios currently have the same value for file name, font and font size; to switch all
scenarios to, say, the 20-point base font size, the user can simply click on that value.

tation and user interaction for some defined region, which typically constitutes
a single widget. If that region would appear differently in the scenarios that
have been set up, the multiplexer shows all those appearances. Each multiplexer
shows its scenarios’ various values side by side, to help a user compare values
between scenarios.

Different kinds of widget call for different styles of multiplexer. In Figs. 1 and 2
most of the cells are for specifying text-string values; these display their scenario-
specific values as a list, with markers to show which list item is used in which
scenario. Just the page cell holds a richer type of content, that cannot be shown
in a list; it shows its alternative values using zooming and spatial arrangement.
However, all types of multiplexer use a common set of colours and arrangements
to represent the various scenarios – so, for example, in Fig. 2 the colour of the
square in the bottom-left of the marker next to ‘tan’ matches the border colour
of the result at bottom left in the page cell. The intention of this is to help a user
understand which values go to make up each scenario. The usability of widget
multiplexers has been evaluated in a series of experiments [11].

Figure 2 shows a later stage in the use of the same recipe, when the user has
introduced alternative values in all of the cells. This was done using a different
mechanism from the scenario-copying approach described above, to avoid gen-
erating the huge number of scenarios that would result from a cross-product of
all values. Instead, the markers beside the value lists support fine-grained ma-
nipulation to let the user choose how many scenarios exist and what values they
contain. In this figure the user has created four scenarios, that differ just in their
values for background and text colour.

A Spreadsheet Supporting Calculation-Structure Variants 149

A cell containing a list of values behaves somewhat like a menu, letting the
user click on values or drag markers to change which value is assigned to which
scenario. In the cells name, font and fontSize the user could click on a currently
unmarked entry to switch all the existing scenarios to that value. This provides
a rapid way to look at a number of alternative cases – for example, to see how
each of the files would look with the specified set of colour combinations.

Figure 3 illustrates two further RecipeSheet features: first is the ability to set
up, side by side, alternative ways to derive a cell’s value; second is the potential
for the system to assist in setting up alternative scenarios, such as by offering a
simple ‘pivot’ facility that generates scenarios based on just the values set up in
one cell (with all other values being held equal).

Fig. 3. Specifying variant procedures. This sheet includes a Smalltalk-based recipe
to derive a string representing the current time at some given offset (in hours) from
Greenwich Mean Time. The user has created a cell to visualise and edit the procedure
for that recipe, creating three scenarios based on three alternative procedures. The
offset cell also contains a range of values. Pressing the cell’s ‘pivot’ button causes the
sheet to switch to scenarios that differ purely according to the values within that cell.

This section has shown how the RecipeSheet supports the basic features of
a subjunctive interface: multiple scenarios can exist at the same time, can be
shown side by side, and can be adjusted in parallel. We have also shown how
scenarios can differ in terms of the processing between cells, not just in terms of
the cells’ contents. In the next section we describe the programming abstraction
that underlies these features.

150 A. Lunzer and K. Hornbæk

3 Recipes

The programming abstraction that we have developed to support variation
in data and in processing is called the recipe. In this section we provide an
implementation-level definition.

3.1 The Basic Recipe

Figure 4 shows in schematic form a recipe’s basic make-up and instantiation. A
recipe is defined in terms of named ingredients (inputs) and results (outputs),
and a single procedure that derives result values based on ingredient values (of
course, the procedures of interest to us may also draw on external resources, such
as the World Wide Web). The stored form of a recipe may include a default value
for each ingredient, and for the procedure.

Fig. 4. Recipe form and instantiation. Left: Schematic for the canonical form of a
recipe, with connections for a list of named ingredients, a list of named results, and a
procedure. Optional default values for the procedure and for each ingredient are shown
as black dots. Right: An instantiated recipe. The user has attached nodes to supply
three of the ingredients (with a single node supplying both b and c), and a node to
hold one of the results, and has set up views to act as the interfaces to those nodes. The
recipe will be evaluated using default values for ingredient d and for the procedure.

For a recipe to be executed it must first be instantiated. This involves associ-
ating value holders, that we call nodes, with some or all of the recipe’s ingredients
and results. In later examples we will show how nodes may be shared between
recipes, as the means for passing values from one recipe to another or for using
the same value in multiple scenarios. At this stage we just note that in each
scenario an ingredient or result may be associated with at most one node, and
furthermore that a node may be associated with many ingredients but at most
one result.

A node does not necessarily have a user interface; it’s up to the user to specify
which nodes should be represented by views, allowing the nodes’ contents to be
viewed or edited. The views on a RecipeSheet are referred to as cells.

3.2 Recipe Composition

Figure 5 illustrates recipe composition. The node that is associated with a result
of one recipe can simultaneously be associated with one or more ingredients of

A Spreadsheet Supporting Calculation-Structure Variants 151

a

b

c

x

d

y

a

b

u

v

recipeR

recipeS

c

a

b

c

x

d

y

a

b

u

v

recipeR

recipeS

c

Fig. 5. Connecting recipes. Left: By declaring that recipeS’s ingredient a will be sup-
plied by the node for result y of recipeR, the user has connected the two recipes.
Right: This composition represented as a single recipe, for use as-is or in further com-
positions. Note that result x of recipeR, which the user had not associated with a node,
is therefore not a result of the composite.

other recipes. Each new value produced for this result will then be propagated
automatically to those ingredients. It is currently the user’s responsibility to
ensure that an ingredient is only connected to a result whose values will be of
suitable type, and that the overall graph of recipe connections is acyclic.

A graph of recipes instantiated and connected in this way can be treated (and
stored) as a single composite recipe. The results, ingredients, and procedure for
this composite recipe are defined as follows: every node within the graph that is
associated with some result is also considered a result of the composite; all other
nodes – i.e., nodes only associated with ingredients – are considered ingredients
of the composite; the recipe’s procedure is, in effect, a nested invocation of the
execution mechanism described below.

3.3 Recipe Execution

The execution model for recipes mimics the dataflow-style behaviour of spread-
sheets. When a recipe is first instantiated, it is executed with the ingredient
values and procedure available at that time. Thereafter, in principle, a recipe
should be re-executed whenever its procedure, or the value of one or more of
its ingredients, is changed. In practice it makes sense to apply various optimisa-
tions – one being that, since a recipe graph is acyclic, re-execution of the graph
in response to any ingredient-value changes can be scheduled such that each
component recipe is executed just once. It can also be useful to let the user
switch to a mode in which re-execution is triggered manually.

In theory the recipe model can support procedures written in any procedu-
ral language. Our current implementation supports just the use of Smalltalk,
XQuery, Web services (through SOAP), and Web-application derivation cap-
tured using our C3W approach [3].

3.4 Recipe Variation

The recipe abstraction, by clarifying which aspects of result derivation are fixed
and which are free to be varied, supports the setup and use of alternative pro-

152 A. Lunzer and K. Hornbæk

Fig. 6. Recipe variation. Three scenarios have been defined, each with its own instance
of the procedure and of the node supplying ingredients b and c. Correspondingly, results
x and y are also associated with three nodes each. Ingredient a is not affected by this
variation, so a single node can serve all the scenarios.

cessing scenarios. Various degrees of freedom are possible; in our current work
we define that the names and types of a recipe’s ingredients and results are fixed,
but that their values and the procedure used to derive the results are variable.

Figure 6 represents an example of recipe variation, showing three scenarios
that involve the same recipe. All scenarios use the same source for one ingredi-
ent, but have independent sources for the other ingredients and for the recipe’s
procedure, allowing different values to be supplied for those elements.

Two types of procedure are supported: single-scenario and cross-scenario. A
single-scenario procedure is written to accept a single value for each ingredi-
ent, and to produce a single value for each result. A cross-scenario procedure is
written to accept a list of values for each ingredient, corresponding to that in-
gredient’s values in all currently existing scenarios. For each named result it may
either deliver a single aggregate value, or an independent value in each scenario.

When a single-scenario procedure is executed, the execution framework au-
tomatically handles the supply of ingredients and delivery of results for just
one scenario; the procedure need not refer to scenarios at all. A cross-scenario
procedure, on the other hand, must be written to expect ingredients as lists,
and must deliver results that are clearly either aggregate values or scenario-
dependent lists. The convention used to indicate this will typically depend on
the programming language being used: for Smalltalk we have created a special
collection class to hold cross-scenario result lists; for XQuery, a special XML tag.
Given that recipes can have different procedures in different scenarios, we need
the following rule for the use of cross-scenario procedures: when a recipe has
variant procedures, any variant that is a cross-scenario procedure must deliver
only aggregate result values.

4 Application to Web Resources

Having outlined what a RecipeSheet can do, we finish with some examples of
how our existing prototype can handle Web-based resources.

A Spreadsheet Supporting Calculation-Structure Variants 153

Fig. 7. Schematic and two displays of a simple composite recipe. The YahooWeather
recipe offers three temperature values (today’s high and low, and the current value)
for a supplied city. The user has connected the high-temperature result, which is in
Fahrenheit, to a custom recipe that converts this to Centigrade. Below, this composite
is being used to look up Sapporo’s temperature; when the user edits the city value and
adds a second value, an extra scenario is created and the two are shown side by side.

Figure 7 illustrates the use of a simple recipe that was captured from the
Yahoo! weather site. Because it was captured using C3W, the extracted results
are pieces of HTML corresponding to a region within a Web page. For a result
that is a piece of HTML, the RecipeSheet offers the following presentations:
normal formatting as if in a browser (using an Internet Explorer view); the
HTML markup as a string; just the content of text elements within the HTML;
the text contents converted to a number. When setting up a cell to hold some
result, the user is therefore given a choice among the available presentations; in
this example the user chose numeric content. A similar choice is available when
a result is connected as an ingredient for another recipe; again, here the numeric
value is used as input to a custom Smalltalk recipe, which converts Fahrenheit
values to Centigrade. Though not revealed explicitly in the current interface, the
processing used to transform one type of result into another (e.g., HTML into a
number) can also be implemented as a recipe.

154 A. Lunzer and K. Hornbæk

Fig. 8. Schematic and display of a recipe that includes variant procedures. Cells tempF
and tempC gather the result nodes from three scenarios, each served by one of the
composite recipes shown at the top. The composites’ details have been simplified for
presentation; one feature of interest is that one obtains a Fahrenheit value from the
Web and converts it to Centigrade, while the others convert in the opposite direction.
The asterisk on the recipe name ‘average*’ indicates that it is a cross-scenario recipe,
providing the average of the values provided for its n ingredient.

A Spreadsheet Supporting Calculation-Structure Variants 155

In Fig. 8 the same combination of the Yahoo! application and temperature
conversion (though this time on the result for the current temperature, rather
than the day’s high) is used as one of three alternative Web resources providing
this information. The other two are based on Web services: one uses a service that
delivers detailed information given a city name, and the other uses a combina-
tion of airport-code lookup followed by retrieval of information for the airport’s
weather station. In the execution shown here, the temperature reported by one
recipe is dramatically different from the others (caused by a mismatch in when
the weather conditions were sampled), revealing one benefit of seeing values side
by side: although the average doesn’t reveal the discrepancy, it is clear when
looking at the contents of tempC and tempF.

We are currently evaluating the RecipeSheet with the help of a group at
Hokkaido University who work with Web-based bioinformatics tools. A
wide range of bioinformatics databases and services are now available over the
Web, but the ad-hoc development of these tools has led to poor integration
between them. A researcher or student who wants to use several tools in con-
cert therefore faces challenges in selecting the aspects of the tools’ behaviour
that are of interest, in connecting the tools while accommodating any necessary
data transformations and user interaction, and in generating and comparing
the results for several scenarios. We are investigating how the RecipeSheet ap-
proach – in particular, its multi-scenario support – might help address these
challenges.

Fig. 9. A recipe that connects three bioinformatics tools: the homology-search tool
BLAST, the phylogenetic-tree generator ClustalW, and the tree viewer ATV. This
setup supports the user in running BLAST with alternative search sequences in cell
seq and/or against alternative databases, then comparing the phylogenetic trees created
by alternative selections among the BLAST results. In this figure the user has created
three scenarios that search against three databases, has selected a few results from each
search, and is running the tree-generation step in cross-scenario mode to aggregate
those selections into a single phylogenetic tree.

156 A. Lunzer and K. Hornbæk

Figure 9 shows a recipe built to a specification provided by our bioinformat-
ics colleagues, embodying a typical sequence of processing steps. This recipe lets
them see, side by side, scenarios involving different databases, then to aggregate
selected results into a single view if wanted. Because our prototype RecipeSheet
does not yet include support for commonly used glue languages such as Perl,
our colleagues are not yet able to build such compositions for themselves. How-
ever, by collaborating on examples such as this we are building up our under-
standing of what is needed, and confirming the potential benefits of the recipe
approach.

5 Conclusion and Future Work

A RecipeSheet is a spreadsheet-like environment, based on the principles of
subjunctive interfaces, that supports users in creating, comparing and manipu-
lating alternative scenarios. Its key concepts are a processing abstraction, called
a recipe, that has explicit support for variation; a theoretically language-neutral
framework for composing and executing recipes, potentially with variants that
establish multiple scenarios; and an interface supporting recipe composition and
the specification of variants. We have demonstrated our RecipeSheet prototype,
developed in Squeak Smalltalk, that we are now evaluating in collaboration with
our bioinformatics colleagues.

Much work lies ahead, on each of the key concepts. First is the recipe ab-
straction, for which we have yet to solidify the theoretical groundwork. Many
aspects, such as how recipes are executed, must be specified with care to ensure
properties such as determinacy and the avoidance of deadlocks. As a longer-
term issue we would like to investigate allowing the variants of a recipe to
differ at the level of ingredients becoming results, and vice versa. This would
greatly enrich the model, but is also likely to lead to severe problems of interface
complexity.

Second is the framework for composing and executing recipes across multiple
scenarios. For the prototype we have postponed the resolution of various issues,
instead using simplifications such as naive per-session caching of results, and
by requiring manual triggering of recalculation when online resources are being
used. We believe that we can find practical solutions to many such issues within
existing research, especially in the domain of scientific workflow systems. We are
also considering the addition of more glue languages (such as REXX and Perl),
to broaden the user base in support of our evaluation work.

Third is the interface. The whole RecipeSheet project is part of our larger
investigation of subjunctive interfaces, and their potential to change people’s
behaviour in evaluating and exploring results obtained in computer applica-
tions. Many questions remain unanswered regarding the willingness with which
people will set up alternative scenarios, and how they would react to a system
that automatically proposes alternatives alongside what they are doing. The
RecipeSheet, as the richest manifestation of subjunctive interfaces to date, will
become our vehicle for exploring these questions.

A Spreadsheet Supporting Calculation-Structure Variants 157

Acknowledgements

We gratefully acknowledge the efforts of the developers of the tools on which the
current RecipeSheet implementation depends: Squeak, and its recently added
bridge to .NET; the eXist implementation of XQuery; and the many bioinfor-
matics tools, and other Web applications and Web services, that we have used
as examples.

This work has been greatly facilitated by the supportive environment of the
Meme Media Laboratory, including Jun Fujima’s unstinting .NET programming
support and late-night design discussions.

The development of the RecipeSheet is partly supported by JSPS grant-in-aid
number 175000533602.

References

1. BookBurro. http://bookburro.org/.
2. Chi, E. H., Barry, P., Riedl, J., Konstan, J.: A Spreadsheet Approach to Informa-

tion Visualization. Proceedings of the IEEE Symposium on Information Visualiza-
tion (InfoViz ’97), pages 17–24.

3. Fujima, J., Lunzer, A., Hornbæk, K., Tanaka, Y.: Clip, Connect, Clone: Combining
Application Elements to Build Custom Interfaces for Information Access. Proc.
ACM UIST, pages 175–184. ACM Press, 2004.

4. Google Maps. http://maps.google.com.
5. Jankun-Kelly, T. J., Ma, K.-L.: Visualization Exploration and Encapsulation via

a Spreadsheet-Like Interface. IEEE Transactions on Visualization and Computer
Graphics, 7(3):275–287. IEEE Press, 2001.

6. Kuhlins, S., Tredwell, R.: Toolkits for Generating Wrappers – A Survey of Soft-
ware Toolkits for Automated Data Extraction from Web Sites. Lecture Notes in
Computer Science (LNCS) 2591, pages 184–198. Springer, 2003.

7. Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., Teixeira, J. S.: A Brief
Survey of Web Data Extraction Tools. SIGMOD Record 31(2):84–93. ACM Press,
2002.

8. Levoy, M.: Spreadsheets for Images. Proceedings of ACM SIGGRAPH ’94, pages
139–146. ACM Press, 1994.

9. Lunzer, A.: Choice and comparison where the user wants them: Subjunctive in-
terfaces for computer-supported exploration. In Proc. IFIP TC. 13 International
Conference on Human-Computer Interaction (INTERACT ’99), pages 474–482.
IOS Press, 1999.

10. Lunzer, A.: Benefits of Subjunctive Interface Support for Exploratory Access to
Online Resources. In: G. Grieser, Y. Tanaka (eds.) Intuitive Human Interfaces for
Organizing and Accessing Intellectual Assets. LNAI 3359, pages 14–32. Springer,
2004.

11. Lunzer, A., Hornbæk, K.: Usability studies on a visualisation for parallel display
and control of alternative scenarios. In Proceedings of AVI 2004, pages 125–132.
ACM Press, 2004.

12. MacManus, R., Porter, J.: Web 2.0 for Designers. Digital Web Magazine, May
2005. http://www.digital-web.com/articles/web 2 for designers/.

158 A. Lunzer and K. Hornbæk

13. Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Carver, T., Pocock,
M. R., Wipat, A., Li, P.: Taverna: A Tool for the Composition and Enactment
of Bioinformatics Workflows. Bioinformatics 20(17):3045–3054. Oxford University
Press, 2004.

14. Smedley, T. J., Cox, P. T., Byrne, S. L.: Expanding the Utility of Spreadsheets
through the Integration of Visual Programming and User Interface Objects. Pro-
ceedings of the workshop on Advanced visual interfaces (AVI ’96), pages 148–155.
ACM Press, 1996.

15. Terry, M., Mynatt, E.: Recognizing Creative Needs in User Interface Design. In
Proceedings of the fourth conference on Creativity and Cognition (C&C 2002),
pages 38–44. ACM Press, 2002.

16. Truvé, S.: Dynamic What-If Analysis: Exploring Computational Dependencies
with Slidercells and Micrographs. Conference Companion of ACM Human Factors
in Computing Systems (CHI ’95), pages 280–281. ACM Press, 1995.

17. Wilson, S.: Building a Visual Programming Language. MacTech 13(4).
http://www.mactech.com/articles/mactech/Vol.13/13.04/Spreadsheet2000/.

18. Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid Computing.
SIGMOD Record, 34(3):44–49. ACM Press, 2005.

Knowledge Federation over the Web
Based on Meme Media Technologies

Yuzuru Tanaka

Meme Media Laboratory, Hokkaido University,
Sapporo, 060-8628 Japan

tanaka@meme.hokudai.ac.jp

Abstract. This paper proposes a formal model for the aggregate ad
hoc federation of geographically distributed intelligent resources acces-
sible through the Web. We already proposed frameworks for one-by-one
ad hoc federation of intelligent resources over the Web. They can define
interoperation among intelligent resources over the Web as a set of inter-
operations between two intelligent resources. They allow us to define an
overall federation by repetitively combining resources. This paper deals
with a case in which we have large sets of intelligent resources accessible
through the Web. Each set is assumed to consist of resources of the same
type, and to be accessible through the Web in the same way. This paper
focuses on how to define and to execute a large set of federations, each of
which defines interoperation among resources taken from different sets of
resources. Such federation is called aggregate federation. Our new frame-
work for ad hoc aggregate federation will be formalized based on meta
relations and their relational expressions, and enables users to flexibly
select some resources satisfying a specified condition from each set of
resources of the same kind, to define a relation of resources satisfying
a specified condition as a subset of the Cartesian product of these dif-
ferent resource sets, and to define and to execute interoperation among
resources in each tuple in the defined relation.

1 Introduction

The Web works not only as an open publishing repository of documents, but
also as an open repository of distributed intelligent resources, i.e., computing
resources. It treats each intelligent resource as a service, and publishes it either
as a Web application or as a Web service. Such intelligent resources include
not only services provided by Web servers, but also embedded and/or mobile
intelligent resources connected to the Internet through wireless communication.
Pervasive computing denotes an open system of intelligent resources in which
users can dynamically select and interoperate some of these intelligent resources
to perform their jobs satisfying their dynamically changing demands. Pervasive
computing assumes the wide distribution of such intelligent resources, not only
over the Web, but also in our physical environments.

In pervasive computing, the ad hoc definition and/or execution of interop-
eration among intelligent resources is called federation. While the integration

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 159–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 Y. Tanaka

denotes interoperation among intelligent resources with standard interoperation
interfaces designed in advance, federation denotes interoperation among intel-
ligent resources without such advance design of interoperation interfaces. Ad
hoc federation denotes such federation that can be defined on site at any time
and any place by a non-programmer user. We define knowledge federation as
federation of intelligent resources published in the form of documents.

Federation of intelligent resources over the Web is relevant to the interdis-
ciplinary and international reuse and interoperation of heterogeneous intelli-
gent resources, especially in scientific simulations [1], digital libraries [2], and
research activities [3]. Federation of intelligent resources over pervasive com-
puting environments is of interest for on-site instantaneous analysis, strategic
planning, and immediate action that maximizes use of accessible resources, es-
pecially in risk management such as disaster relief and zoonosis control, finance,
user-customizable security and management systems for office and home, strate-
gic business analysis and management, customizable control of sensor and/or
actuator networks, user-customizable monitoring and control of home electronic
appliances, and so on. Federation of intelligent resources over pervasive com-
puting environments requires ad hoc definability and an interactive easy way
of finding appropriate resources and obtaining the proxies needed to utilize
them.

Federation of intelligent resources may be classified into two types: autonomic
federation defined by programs, and ad hoc federation by users. Most studies on
federation have focused on the former type. Their approach is based on both the
proposal of a standard communication protocol with a language to use it and a
repository with a matching mechanism between service-providing programs and
service-consuming programs [4]. The origin of such an idea can be found in the
original tuple space model Linda [5, 6], which was then extended to Lime [7] to
cope with mobile objects with dedicated tuple spaces. Federation of this type
over the Web uses Web service technologies. In this paper, we focus on the latter
type, i.e., federation defined by users. Such federation is defined by users in an
ad hoc manner.

For ad hoc federation of intelligent resources accessible through the Web, we
have already proposed the use of meme media technologies [8, 9] and the C3W
framework [10] to clip out any portion of Web applications as visual components
and to combine them through direct manipulation to create a new composite
service. Such federation is defined one by one, and is called one-by-one federation.
In this paper, we propose aggregate federation among sets of intelligent resources.
Each set is assumed to consist of geographically distributed intelligent resources
of the same type. Examples of such a set are a set of temperature sensors, a set
of air conditioners, and a set of function calculation services including the one
that converts a current room temperature value to the optimum air conditioner
control parameter value to keep the most comfortable room temperature.

We assume that such a set of intelligent resources of the same type is de-
signed to make their properties and IO (input and output) parameters accessible
through the Web using one of the following representations:

Knowledge Federation over the Web Based on Meme Media Technologies 161

1. as a textual list of items embedded in a Web document,
2. as a relation among an input form value of a Web application and a textual

list of items embedded in its corresponding output Web page, or
3. as a relation between inputs and outputs of a Web service.

This paper proposes aggregate federation technologies based on our meme
media architecture and frameworks to extract a ‘Web view relation’ of intelligent
resources from the above three representations, and to functionally combine these
Web view relations using relational expressions for defining a federation among
sets of intelligent resources in an ad hoc way. A Web view relation works similarly
to a view relation. The latter is defined by a query over a relational database
and is treated as a database relation, while the former is defined by HTML
path expressions over Web documents and/or Web applications, and is, likewise,
treated as a database relation.

2 Basic Idea of Our Approach

The approach to one-by-one ad hoc federation developed by us requires a tech-
nique for extracting the IO relation of each intelligent resource as a meme media
object, and defining a federation among intelligent resources by combining their
corresponding meme media objects [9, 10]. Aggregate ad hoc federation, on the
other hand, requires a technique for extracting sets of IO relations as a ‘Web view
relation’, and defining a set of federations among sets of intelligent resources by
combining their corresponding view relations using relational expression such as
those used for relational databases.

Each Web view relation defines rules to obtain a relation from the Web. It is a
non materialized relation, and becomes a materialized relation when evaluated.
Web view relations can be treated as relations in databases. A relational expres-
sion of view relations defines another Web view relation, which also becomes a
relation when evaluated.

For a set of intelligent resources whose information is published as a textual
list in a Web document, we can apply some Web wrapper technology to extract
a Web view relation over a specified set of attributes about these intelligent
resources. Each record, or each tuple, in such a Web view relation represents a
single intelligent resource, and provides the value of each of its attributes. For a
Web document on a set of sensors of different categories at different locations, we
may extract a Web view relation with the sensor identifier, the sensor type, the
sensor location, and the current sensor value as its attributes. In this example, the
sensor identifier attribute works as a primary key of this relation. The evaluation
of a Web view relation first accesses the Web page and extracts a materialized
relation. The evaluation of the same Web view relation may result in different
relations at different times if this Web page is periodically updated by its server.

For a set of intelligent resources whose information is published as a Web
application, we can apply the same method we have proposed [11] for one-by-
one federation to the Web application to extract an IO relation as a meme

162 Y. Tanaka

media object, which works as a proxy object of this Web application. Such
a meme media object representing an IO relation, when provided with a set
of possible input values for each extracted input field, defines a materialized
relation. Therefore, it also defines a Web view relation whose input domains
should be specified in advance.

For a set of intelligent resources whose information is published as a Web
service, we propose a new method for automatically analyzing the WSDL de-
scription of its interface, asking a user to specify IO items to extract an IO
relation from the Web service, and automatically creating a meme media object
with IO ports for the extracted IO relation. This meme media object works as a
proxy object of the Web service, enabling only a subset of the original IO ports.
Such an IO relation, when provided with a set of possible input values for each
extracted input item, defines a materialized relation. Therefore, it also defines a
Web view relation whose input domains should be specified in advance.

Using a relational expression over such Web view relations, we will be able
to define an aggregate federation among sets of intelligent resources, where each
set consists of intelligent resources of the same type.

3 Web View Relations for Web Applications and Web
Services

3.1 Meme Media as an Enabling Technology

IntelligentPad is an instance of the meme-media architecture, based on a two-
dimensional representation. For our current purposes, its architecture can be
roughly summarized as follows: Instead of directly dealing with component ob-
jects, IntelligentPad wraps each object with a standard pad wrapper, i.e., a soft-
ware module with a standard visual representation and a standard functional
linkage interface, and treats it as a media object called a pad. Each pad has both
a standard user interface and a standard connection interface. The user interface
of every pad has a card-like view on the screen and a standard set of operations
like ‘move’, ‘resize’, ‘copy’, ‘paste’, and ‘peel’. As a connection interface, every
pad provides a list of slots that work as IO ports, and a standard set of messages
‘set’, ‘gimme’, and ‘update’. Each pad designates one of its slots as its primary
slot. Most pads allow users to change the primary-slot designation.

You may paste a pad on another pad to define a parent-child relationship
between these two pads. The former becomes a child of the latter. When you
paste a pad on another, you can select one of the slots provided by the parent
pad, and connect the child pad to this selected slot. The selected slot is called
the connection slot. Using a ‘set’ message, each child pad can set the value of its
primary slot to the connection slot of its parent pad. Using a ‘gimme’ message,
each child pad can read the connection slot value of its parent pad, and update
its primary slot with this value. Whenever a pad has a state change, it sends
an ‘update’ message to each of its child pads to notify that there has been a
state change. Whenever a pad receives an ‘update’ message, it sends a ‘gimme’

Knowledge Federation over the Web Based on Meme Media Technologies 163

message to its parent pad to read the recent value of the slot to which it is
connected. For each slot connection, you can independently enable or disable
each of the three standard messages, ‘set’, ‘gimme’, and ‘update’. By pasting
pads on another pad and specifying slot connections, you may easily define both
a compound-document’s layout design and functional linkages among these pads.
Further details on its architecture, its applications, and its extension to a meme-
media instance with three-dimensional representation can be found in [8].

3.2 Web View Relations for Web Applications

Our C3W framework, proposed in 2004 [11], allows a user to clip arbitrary HTML
elements from Web pages visited through a sequence of navigation operations,
and to paste these clips, represented as pads, onto a single special pad called a
C3WsheetPad. The pasted pads capture not just the appearance of the clipped
elements, but also the functional relationships between them in the original
navigation. Figure 1 shows an application of this framework to the CNN Money
stock-quote information service Web page. The Web browser used here is also
a pad, that wraps Internet Explorer. This browser pad supports clipping by
providing a highlight that follows the mouse pointer, indicating the region of
the nearest surrounding HTML element; if the user starts a mouse drag, the
highlighted document portion is clipped as a pad.

In Fig. 1, we first clipped the company-name input field as a pad and pasted it
on a C3WsheetPad. Then we entered a company name in the input field on the
original Web page, and submitted it to the Web application. The Web application
updated the page to show the current stock quote of this company. Then we
clipped the stock-quote value from this page, and pasted it as another pad on
the same C3WsheetPad. The first clip holds the url of the original Web page and
the HTML path expression that specifies the selected element within this page.

Fig. 1. Clips extracted from more than one page in a single navigation and their
recombination on a C3WsheetPad

164 Y. Tanaka

The second clip holds all the user operation events between the first and second
clipping, and the HTML path expression specifying the second selected portion
on the current Web page. When these clips are pasted on the C3WsheetPad,
it uses their HTML path expressions, and the sequence of user actions between
the clipping operations, to relate the clips as inputs and outputs of the Web
application. It also assigns each clip a unique cell name such as A, B, C, . . ., Z,
A1, B1, . . . , and generates a corresponding slot, i.e., a slot #A for the cell A.
The value of each slot is typically the HTML description of the HTML element
shown by the clip connected to this slot. However, for convenience, the slot
values for simple clips are defined differently: clips of non-numerical input fields
and non-numerical text strings have slot values that correspond to their textual
contents; numerical input fields and numerical text strings have numerical slot
values.

The C3WsheetPad used in the example shown in Fig. 1 works as a pad, with
two slots #A and #B, even after we peel off the two clips. It accepts a company
name through slot #A and returns the current stock quote of the company
through slot #B. Therefore, it works as a virtual database relation over the two
attributes <company name> and <stock quote>, where someone must specify
externally the domain of the attribute <company name>. We may consider this
pad as a Web view relation V(<company name>*, <stock quote>), where the
asterisk in <company name>* indicates that the domain of this attribute needs
to be specified externally.

Suppose that there is a large set of geographically distributed sensors, and that
the current output values of these sensors can be accessed through a dedicated
Web application. We further assume the following about this Web application:
It has an input field for specifying a sensor identifier, and a submit button to
issue a query to the server. After evaluating each query, the server updates the
Web page to return the current status of the specified sensor. For simplicity, we
assume that it returns a single output value.

Our C3W framework, when applied to this Web application, allows us to
first clip out the sensor identifier input form, then to click the submit but-
ton on the original Web page, and to clip out the sensor value from the up-
dated Web page. The pasting of these two clips on the same C3WsheetPad
creates two slots, slot #A for the sensor identifier input and slot #B for the
sensor value output. After we peel off these clips, this C3WsheetPad works
as a Web view relation V1(<sensor identifier>*, <sensor value>), in which the
domain of the attribute <sensor identifier> needs to be specified externally.
Let S(<sensor identifier>) be a unary relation that specifies a set of sensor
identifiers. Then an expression defining a natural join of the Web view re-
lation V1 and the relation S defines a new Web view relation over two
attributes, <sensor identifier> and <sensor value>. The evaluation of this ex-
pression takes one sensor identifier at a time from S and inputs this to the
<sensor identifier> attribute of the Web view relation V1 to obtain the corre-
sponding <sensor value> attribute value, and returns a relation over these two
attributes.

Knowledge Federation over the Web Based on Meme Media Technologies 165

3.3 Web View Relations for Web Services

If a Web service is provided with a WSDL description of its interface, we can
simply syntactically analyze this description to obtain the complete list of its
input and output ports. This analysis and the listing can be easily automated. In
order to automate the wrapping of an arbitrary Web service to obtain its proxy
pad with slots for arbitrarily selected IO ports, we need to automate the code
generation for defining slots for selected IO ports. This can be automated by
analyzing each IO port type in the WSDL description and by applying standard
code generation for each port type. Based on these operations we have developed
a pad wrapper for Web services. When applied to a Web service, this pad wrapper
pops up a complete list of its IO ports, and asks its user to select some of them
to work as slots. When the user specifies a selection, it automatically generates
a pad that works as a proxy object of this Web service.

Suppose that there is a large set of geographically distributed sensors, and that
the properties and the current values of these sensors can be accessed through
a Web service. We further assume the following about this Web service: Its
interface includes the sensor identifier input, the sensor-category output, the
sensor-location output, and the current sensor-value output. The pad obtained
as a proxy of this Web service by using the above-mentioned service wrapper
technology will have <sensor identifier>, <sensor category>, <sensor location> and
<sensor value> as its slots. This pad can work as a Web view relation V2(<sensor
identifier>*, <sensor category>, <sensor location>, <sensor value>) in which the
domain of the attribute <sensor identifier> needs to be specified externally. An
expression defining a natural join of this Web view relation and the unary relation
S(<sensor identifier>) used in the previous section defines a Web view relation
over the attributes <sensor identifier>, <sensor category>, <sensor location> and
<sensor value>. The evaluation of this expression accesses the Web service as
many times as the cardinality of the relation S to obtain the same number of
tuples.

4 Web View Relations for Lists in Web Documents

Tools for the extraction of a Web view relation from a Web document, a Web
application, or a Web service are generically called Web wrappers. There are
quite a few research studies on Web wrappers for Web documents, as will be
discussed in Sect. 7. Here we propose a new type of Web wrapper based on the
relational model of databases. Such a Web wrapper is represented as a meta
relation, which is a relation with meta values as its attribute values. Meta values
include texts, numerical values, HTML path expressions, and urls.

Figure 2 shows a Web document with a table showing the career averages of
an NBA basketball player. The first attribute <year> of the first record in this
table has ‘97-98’ as its textual value, and is identified by an HTML expression
/html[1]/body[1]/table[1]/tr[2]/td[1]/, while the second attribute <team> of the
same tuple has SAC as its value, and is identified by an HTML path expres-
sion /html[1]/body[1]/table[1]/tr[2]/td[2]/. It should be noticed here that the

166 Y. Tanaka

Fig. 2. A Web document with a table showing the career averages of an NBA basketball
player

first row in the career average table showing attribute names corresponds to
the HTML path expression /html[1]/body[1]/table[1]/tr[1]/, and the tuples are
listed from the second row at /html[1]/body[1]/table[1]/tr[2]/. Similarly to the
first tuple, the two attribute values of the second tuple are identified respectively
by the following HTML path expressions, /html[1]/body[1]/table[1]/tr[3]/td[1]/
and /html[1]/body[1]/table[1]/tr[3]/td[2]/. Instead of copying these four values
for filling in a newly defined relation R(<year>, <team>) as shown in Fig. 3(a),
let us fill in this new relation with their HTML path expressions as shown in
Fig. 3(b). We call this latter relation a meta relation. This meta relation defines
two rules to extract the first and second tuples from the Web page. Our basic
idea is to generalize these two rules to a single rule to extract not only the first
two tuples, but all the tuples from the Web page.

The generalization of the two HTML path expressions of the first attribute,
/html[1]/body[1]/table[1]/tr[2]/td[1]/ and /html[1]/body[1]/table[1]/tr[3]/td[1]/
is what is called their antiunification, and results in /html[1]/body[1]/table[1]
/tr[x]/td[1]/, whereas the generalization of the two HTML path expressions of
the second attribute results in /html[1]/body[1]/table[1]/tr[y]/td[2]/. Here we
used different variables for these two generalizations since they are indepen-
dently performed. However, they are not independent with each other since the
first candidate of the first generalization corresponds to the first candidate of
the second generalization, and likewise for subsequent candidates. We must use
the same variable for these two generalizations.

This constraint among attribute values in the same generalized tuple is called
the aggregation constraint. We need to generalize meta values in each attribute
to satisfy the aggregate constraint. We can deal with the aggregate constraint
in the generalization for each attribute by keeping a record of which values are
generalized to each variable. We use a special notation x(u, v) to represent a

Knowledge Federation over the Web Based on Meme Media Technologies 167

Fig. 3. A relation and a meta relation that are manually extracted from a table in a
Web document

variable that generalizes two values, u in the first candidate and v in the sec-
ond candidate. For example, in the generalization for the first attribute in the
above example, the variable x is a generalization of the two indices ‘2’ in the
first candidate and ‘3’ in the second candidate. In order to keep this record,
we use a notation x(2, 3) for this variable instead of x. For the variables in the
same tuple, i.e., for the variables subject to the aggregate constraint, we use the
same symbol x in this variable notation x(u, v). Now, the generalizations for the
first and second attributes become /html[1]/body[1]/table[1]/tr[x(2, 3)]/td[1]/
and /html[1]/body[1]/table[1]/tr[x(2, 3)]/td[2]/ as shown in Fig. 3(c). Because
there are two occurrences of the same variable x(2, 3), they are always instanti-
ated with the same value. The notation x(2, 3) also denotes that the variable’s
instantiation sequence starts at ‘2’ and changes in increments of 1. When x(2, 3)
in /html[1]/body[1]/table[1]/tr[x(2, 3)]/td[1]/ is instantiated with ‘2’, ‘3’, . . . in
this order, its occurrence in /html[1]/body[1]/table[1]/tr[x(2, 3)]/td[2]/ is also
simultaneously instantiated with ‘2’, ‘3’, . . . to extract the first two columns of
the career average table in the Web page and to create a relation R(<year>,
<team>).

The generalization of the two tuples mentioned above can be explained in
terms of meta relations and meta values as follows. First, you create an empty
new meta relation R(<year>, <team>) with a relation name R and attribute
names <year> and <team>. This meta relation specifies a relation you will create
from values extracted from a Web page. You may specify the first column of the
first tuple in the career average table on the Web page, and associate it with the
first attribute of the first record in R. Then you may specify the second column
of the first tuple in the career average table on the Web page, and associate it
with the second attribute of the first record in R. These operations create the
first tuple with meta values in R as shown in Fig. 3(b). Then you may repeat
similar operations to associate the first two column values of the second tuple

168 Y. Tanaka

Fig. 4. A list of notebook PC products of Toshiba, where the header and the list
of different models in each PC series are each represented as HTML table fragments
parenthesized with table tags

in the career average table on the Web page with the second tuple in R. These
operations create the second meta value tuple in R as shown in Fig. 3(b). Now
you can apply a generalization operation to the first two meta value tuples in R,
which merges two tuples in R to a single tuple as shown in Fig. 3(c). The meta
relation thus obtained in Fig. 3(c) defines the rule for a Web wrapper.

Figure 4 shows a list of notebook PC products of Toshiba, where the header
and the list of different models in each PC series are both represented as HTML
table fragments parenthesized with table tags. In order to extract all model
names of notebook PCs from this Web page, we need to specify as extraction can-
didates the first model name in the first series, the first model name in the second
series, and the second model name in the second series. Their path expressions
/html[1] /body[1] /table[2] /tr[1]/td[2]/, /html[1]/body[1] /table[4] /tr[1] /td[2]/,
/html[1]/body[1]/table[4]/tr[2]/td[2]/ are used as meta values of a meta relation
PC(<model name>). The generalization of the second and third tuples in this re-
lation is /html[1]/body[1]/table[4]/tr[x(1, 2)]/td[2]/. The further generalization
of this and the first tuple is /html[1]/body[1]/table[x(2, 4)]/tr[x(1, 2)]/td[2]/,
where the generalization of ‘1’ and ‘x(1, 2)’ becomes ‘x(1, 2)’ since the latter in-
cludes the former (Fig. 5). The meta relation PC(<model name>) with a single
tuple /html[1]/body[1] /table[x(2, 4)]/tr[x(1, 2)]/td[2]/ thus obtained works as a
Web wrapper to extract all the model names from this page. The two variables
x(2, 4) and x(1, 2) are independently instantiated respectively with 2, 4, 6, . . . ,
and with 1, 2, 3,

In the above examples, we extracted only such items that are arranged in a
tabular form in the source Web pages. However, their generalization uses only
the regularity among the HTML path expressions of the items extracted for
the same attribute, and the regularity of relative locations of the HTML nodes
extracted for the different attributes of the same tuple. Therefore, the items to
be extracted need not be arranged in a tabular form in the source Web page. The

Knowledge Federation over the Web Based on Meme Media Technologies 169

Fig. 5. A generalization of two tuples in the same series, and a generalization of two
different series

extraction of book information items such as the title, the authors, the publisher,
the year, and the price from an amazon.com or Barnes&Noble.com book search
result is such a case. Furthermore, such a list from which to extract a relation
may continue across more than one page.

In order to extend our method for extracting a relation from a list on multi-
ple pages, we extend a meta relation to include an additional dummy attribute
<url>. This attribute may take a navigation path expression as its value. A
navigation path expression is recursively defined as follows: A url is a naviga-
tion path expression. Suppose that a is a navigation path expression; if b is
an HTML path expression identifying an anchor node in the Web page iden-
tified by a, then ab/click/ is a navigation path identifying the target Web
page. If b is an HTML path expression identifying an input field in the Web
page identified by a, then ab/submit(v)/ is a navigation path identifying the
target Web page that is obtained by the submission of v through this input
field.

Figure 6 shows a Barnes&Noble book search result for two keywords, ‘meme’
and ‘media’. This result consists of more than one page. We want to extract
the title, the front cover image, and the price of each book from the whole
search result. We will construct a meta relation with a <url> attribute as fol-
lows. Using the first search result page, we will extract all the attribute values
for the first and second candidate tuples, and obtain their HTML path expres-
sions to define a meta relation as shown in Fig. 7(a). We will then generalize
these two tuples, and replace them with a single generalized tuple as shown
in Fig. 7(b). Now we will set the url of this first result page to the <url> at-
tribute of the first tuple in the meta relation with the <url> attribute. Then
we will extract the anchor to the next page and put its navigation path, end-
ing with /click/, in the <url> attribute of the second tuple in the meta rela-
tion. We may specify the other attributes of the second tuple to have the same
meta values as the first tuple. This is shown in Fig. 7(c). Now we will gener-

170 Y. Tanaka

Fig. 6. A Barnes&Noble book search result for two keywords, ‘meme’ and ‘media’

alize these two tuples to obtain a single tuple whose <url> attribute value is
url1x(ε, /html[1]/. . ./click/), where url1 is equal to http://search .barnesand-
noble.com/booksearch/results.asp?SAT=11&WRD=meme+media (Fig. 7(d)).
This variable x(ε, /html[1] /. . ./click/) denotes that its value is first instan-
tiated with an empty string ε, then secondly with /html[1]/. . ./click/, thirdly
with /html[1]/. . ./click/html[1]/. . ./click/, and so on in this order. Thus the first
page, second page, third page, . . ., are sequentially processed to extract all the
records in this order. The processing will terminate automatically if the last page
has no corresponding anchor.

The generalization of multiple HTML path expressions can be computed using
an antiunification algorithm. Antiunification for general cases has been studied
by Reynolds [12], and also by Plotkin under the name ‘generalization’ [13]. In our
system implementation, we used LCS (Longest Common Sequence) algorithm
for antiunification.

When applied to a Web page with a list of properties and current statuses of
distributed intelligent resources, meta relations thus defined to extract some of
these entities work as Web view relations. They represent data extraction rules,
and can be evaluated to become relations. Web view relations thus obtained
have no attributes whose domains need to be externally specified.

Suppose that there exists a Web page with a list of properties and current
statuses of distributed sensors. This list shows the identifier, category, location,
and current value of each sensor, and periodically updates itself. Following the
procedures described above, we can easily extract these values of all these sen-
sors in the form of a meta relation Sensor(<identifier>, <category>, <location>,
<current value>). This meta relation works as a Web view relation, and can be
joined with other Web view relations.

Knowledge Federation over the Web Based on Meme Media Technologies 171

Fig. 7. A meta relation to extract a Web view relation from a list across more than
one page

172 Y. Tanaka

5 Web View Relations for Web Applications That Return
Lists

The Barnes&Noble.com example in Fig. 6 used a meta relation with a <url>
attribute to extract a Web view relation from a list embedded in more than
one Web page. However, this example is actually a Web application, and accepts
different search keywords to output different lists. In this section, we will explain
how we can use a meta relation to extract a Web view relation with the new
attribute <keyword> in addition to the three attributes <title>, <front cover
image> and <price>.

When you input a keyword, the Barnes&Noble site returns a new page whose
url includes a query at the end of a url address. Here, we will define a meta rela-
tion BookSearch with two attributes <keyword> and <url> as shown in Fig. 8(a).
The <keyword> attribute and the <url> attribute of the first tuple take the first-
candidate input keyword ‘meme’ and the url of the corresponding search result
page. These two attributes of the second tuple take the second-candidate input
keyword ‘Web’ and the url of the corresponding search result page. Figure 8(a)
shows these two tuples. The generalization of these two tuples results in a meta

Fig. 8. Extraction of a relation between each keyword and the result-page url as a meta
relation, and its generalization join with the meta relation that works as a wrapper to
extract a relation from each search result

Knowledge Federation over the Web Based on Meme Media Technologies 173

relation with a single tuple as shown in Fig. 8(b). This meta relation works as a
Web view relation BookSearch(<keyword>*, <url>) whose <keyword> attribute
domain needs to be externally specified.

In order to combine this meta relation with the meta relation Book to define a
meta relation over <keyword>*, <url>, <title>, <front cover image> and <price>,
we need a special operation BookSearch**Book, which is similar to a natural
join. The operation R**S is called a generalization join, and defined as follows:

R**S = {t1**t2 | t1∈R, t2∈S},

where t1**t2 is dfined to take the least generalized value of t1 and t2 for the
join attributes, the same value as t1 for other attributes of t1, and the same
value as t2 for other attributes of t2. The generalization join BookSearch**Book
becomes a meta relation as shown in Fig. 8(c). This generalization join works
as a Web view relation over <keyword>*, <url>, <title>, <front cover image> and
<price>. The domain of its <keyword> attribute needs to be externally specified.

Suppose that distributed sensors are made accessible through a Web applica-
tion of this type, in which we specify, for example, a category to obtain a list of
sensors across more than one page. The specification of a category corresponds
to a specification of a keyword in the Barnes&Noble.com example. The above-
mentioned method enables us to interactively extract a Web view relation, such
as Sensor(<category>*, <id>, <location>, <value>), from this Web application.

6 Aggregate Federations as Relational Expressions of
Web View Relations

Like view relations, Web view relations can be treated in the same way as re-
lations. When evaluated, Web view relations become relations. Their evaluation
accesses the source Web pages to extract actual attribute values of all the tuples.
Relational expressions of Web view relations may use the same set of relational
operations defined for relations. These operations include projection, selection,
restriction, join, union, and intersection operations. This paper uses Codd’s no-
tation for relational operations, i.e., R[A, B] for the projection of a relation R
to a set of attributes A and B, R[A=‘v’] for a selection of a relation R with
respect to the condition that the value of the attribute A must be ‘v’, R[A=B]
for a restriction of a relation R with respect to the condition that the values of
the two attributes A and B must be the same, and R[A=C]S for a join of two
relations R and S with respect to the condition that a tuple t1 in R is joined
with a tuple t2 in S iff the A attribute value of t1 is equal to the C attribute
value of t2.

Relational expressions of Web view relations are not evaluated unless the
evaluation is explicitly applied. The evaluation of a relational expression E of
Web view relations is denoted by eval(E).

Suppose we have a set of distributed room sensors including temperature sen-
sors and a set of distributed actuators including air conditioners. We assume

174 Y. Tanaka

that each room has only one sensor of a specific category and only one actu-
ator of a specific category. We assume that a list of sensors and a list of air
conditioners are both documented in the two Web pages D1 and D2. The in-
formation in these lists includes the identifier, category, location of each sensor
and each air conditioner. Locations are specified by room numbers. Suppose
also that there is a Web application A1 that returns the current value of a
specified sensor. Suppose also that there is a Web service S1 that controls a
specified actuator with a specified control value. We also assume that there is a
library of functions including a special function with ‘optimal-air-conditioning’
as its name, which calculates the optimal air-conditioner control-value for the
current room temperature. We assume that this library is provided by a Web
service S2, and that each function name uniquely determines a function in this
library.

Applying our meta relation method to the Web documents D1 and D2, we
can interactively extract Web view relations R1(<sensorID>, <sensorCategory>,
<room>) and R2(<actuatorID>, <actuatorCategory>, <room>) respectively from
D1 and D2. The attributes <sensorID> and <actuatorID> work as key attributes
of R1 and R2 respectively.

For the Web application A1, we can apply our C3W framework to clip out its
sensor-identifier input field and the current sensor value from the result page.
When pasted with these clips, a C3WsheetPad creates two corresponding slots,
and works as a Web view relation R3(<sensorID>*, <currentValue>) whose first
attribute domain needs to be externally specified. The <sensorID> attribute
works as the key of this Web view relation.

For the Web service S1, our Web service wrapper analyses its WSDL descrip-
tion and asks the user to select some of its IO ports. We may select the two
input ports for inputting the actuator identifier and the actuator control-value.
Then the wrapper automatically creates a pad with these two ports as its slots.
This pad works as a Web view relation R4(<actuatorID>*, <controlValue>*)
whose two attribute domains need to be specified externally. The attribute
<actuatorID> works as the key attribute of this Web view relation.

Similarly, the function library can be extracted from the Web service S2 as a
Web view relation R5(<functionName>*, <input>*, <output>) whose first two at-
tributes’ domains need to be specified externally. The attribute <functionName>
works as the key attribute of this Web view relation.

In order to define a new Web view relation WV1(<sensorID>, <room>) about
all the temperature sensors in R1, we may apply a relational selection operator
to R1 as follows:

WV1 ← R1[<sensorCategory>=‘temperature’][<sensorID>, <room>].

Using this Web view relation WV1 to specify the domain of the Web view
relation R3, we can define a new Web view relation WV2(<sensorID>, <room>,
<currentValue>) as follows:

Knowledge Federation over the Web Based on Meme Media Technologies 175

WV2 ← (WV1[<sensorID>=<sensorID>*]R3)[<sensorID>, <room>,
<currentValue>],

where the two Web view relations WV1 and R3 are joined with respect to their
<sensorID> attributes.

Similarly, we can define a new Web view relation WV3(<actuatorID>, <room>,
<controlValue>*) about all the air conditioners in R2 as follows:

WV3 ← ((R2[<actuatorCategory>=‘air conditioner’][<actuatorID>, <room>])
[<actuatorID>=<actuatorID>*]R4)[<actuatorID>, <room>,
<controlValue>*].

Now each temperature sensor in the Web view relation WV1 is associated
with an air conditioner installed in the same room by defining a new Web view
relation WV4(<sensorID>, <currentValue>, <actuatorID>, <controlValue>*) as
follows:

WV4 ← (WV2[<room>=<room>]WV3) [<sensorID>, <currentValue>,
<actuatorID>, <controlValue>*].

The Web view relation WV4 defines which temperature sensor is associated
with which air conditioner in the aggregate federation we want to establish,
without specifying the functional interoperation among them. The current value
of each sensor is not used yet to specify the control value of the associated air
conditioner. Each sensor output is used to calculate the optimal control value
for the associated air conditioner. This calculation is performed by one of the
functions in the function library provided by the Web service S2. This function
is obtained as the single tuple in the following Web view relation WV5(<input>*,
<output>):

WV5 ← R5[<functionName>*=‘optimal-air-conditioning’][<input>*, <output>].

Now, we can relate the current value of each sensor to the control value
of the associated air conditioner by converting the former to the latter using
the function in WV5. The Web view relation WV6(<sensorID>, <currentValue>,
<actuatorID>, <controlValue>) defined as follows establishes the aggregate fed-
eration we want:

WV6← (WV4[<currentValue>=<input>* and <controlValue>*=<output>]WV5)
[<sensorID>, <currentValue>, <actuatorID>, < controlValue>].

When evaluated periodically, this Web view relation thus defined using in-
termediate Web view relations WV1, WV2, WV3, WV4 and WV5 makes each
room-temperature sensor interoperate with the air conditioner in the same room
by periodically sending the current value output of the former to the control
value input of the latter through the conversion function named ‘optimal-air-

176 Y. Tanaka

conditioning’. We use the notation eval*(E, t) to denote such periodic evalua-
tion of a relational expression E of Web view relations at a time interval t. The
time interval t must be larger than the minimum time required to evaluate E by
accessing the Web.

For any aggregate federation over the Web that includes neither recursion
nor loops in its interoperations, we can always use a relational expression of
Web view relations to specify this aggregate federation in an ad hoc manner.
Our methods to extract Web view relations about intelligent resources from the
Web and the use of relational expressions involving them enable us to define and
execute aggregate federations among intelligent resources over the Web in an
ad hoc way.

7 Related Work

A typical example system to which our aggregate federation technologies can be
applied may be such a wireless sensor network accessible through the Web as
described in [14]. The current sensor networks are assumed to be designed for
specific applications, having data communication protocols strongly coupled to
applications. Sensor networks of the future, however, are envisioned as compris-
ing heterogeneous devices that offer assistance for a wide range of applications.
To achieve this goal, a new architecture approach is needed, having application-
specific features separated from the data communication protocol, while influ-
encing its behavior. Some people propose a Web Services approach for the design
of sensor networks, in which sensor nodes are service providers and applications
are clients of such services [15]. Their main goal is to enable a flexible architec-
ture in which sensor networks data can be accessed by users spread all over the
world.

In this paper we have aimed at a similar flexible architecture in which we
can dynamically select sensors and actuators from existing sensor networks and
actuator networks, and make them interoperate with each other together with
other intelligent resources over the Web. Such a technology for the ad hoc ag-
gregate federation of various intelligent resources that are accessible through the
Web has not been well studied yet.

Once sensor networks’ data are accessible through Web services, their inter-
operation might be defined as the coordination of Web services that has been
studied in [16, 17, 18]. Such coordination is also called orchestration [19, 20] or
choreography [21] of Web services.

We consider that there are three modes for creating and coordinating func-
tional combinations of available Web applications and/or Web services: static
federation, dynamic federation, and ad hoc federation. Each mode involves se-
lecting intelligent resources within some defined scope, making them interoperate
with each other, and coordinating them to satisfy given demands. For a static
demand and a static scope of resources, the selection, interoperation, and coor-
dination of intelligent resources can also be statically defined. However, if either
the demand or the scope of resources may change dynamically, then the selec-

Knowledge Federation over the Web Based on Meme Media Technologies 177

tion, interoperation, and coordination of intelligent resources requires dynamic
or ad hoc definition. Dynamic definition can be used if the demand is static, or
its dynamic change can be predicted and specified in advance; ad hoc definition
is required if the demand cannot be predicted.

A static federation uses a static description to relate each component of a new
composition with the component of some available resource that may be explic-
itly specified or semantically quantified. Semantic Web [22] technologies such as
RDF [23] were introduced for this purpose. Composition with existing Web doc-
uments using RDF defines a portal site, but cannot make more than one Web
application interoperate with each other through parameter bindings. Seman-
tic Web technologies can define parameter bindings only among Web services
through an agent program. This technology is called Semantic Web Service.

The Semantic Web Service technology [24, 25, 26] aims to enable a wide variety
of agent technologies for automated Web service discovery, execution, compo-
sition, and interoperation. It is based on both Semantic Web technologies and
agent technologies over the Web such as the Web agent technology [27] and the
softbot [28]. The Semantic Web service framework enables us to program an
agent for a dynamic federation of more than one Web service.

Dynamic federation based on the Semantic Web service framework uses an
agent program for the discovery, execution, composition, interoperation, and
coordination of Web services. Therefore, both the quantification conditions for
discovery, and the way of interoperation must be predictable for us to program
them in the agent. Dynamic federation is different from ad hoc federation. The
latter deals with the case in which the quantification conditions for discovery,
and the way of interoperation are not predictable, and cannot be programmed.

Dynamic federation technology, however, cannot enable us to combine two
Web applications that we come across and wish to combine for assistance with
our current task. Even if the same two functions are also provided as Web ser-
vices, we need to develop an agent for their interoperation before we can uti-
lize the composite function. This is not only time consuming as well as cost-
inefficient, but also troublesome since it breaks the continuity of our thought in
our current task. We need a new technology for instantaneous federation that
can be defined immediately on site at any place and any time in an ad hoc
way.

Ad hoc federation of intelligent resources requires ad hoc definability of inter-
operation and coordination, and an interactive easy way of finding appropriate
resources and obtaining the proxies needed to utilize their functions. We are not
aware of technologies for ad hoc federation other than those proposed by our
group [11, 29].

These frameworks we proposed in [11, 29] for ad hoc federation are, however,
applicable only to one-by-one federation. They can define interoperation among
intelligent resources over the Web as a set of interoperations between two in-
telligent resources. They allow us to define an overall federation by repetitively
combining resources. This paper deals with a case in which we have large sets of
intelligent resources accessible through the Web. Each set is assumed to consist

178 Y. Tanaka

of resources of the same type, and to be accessible through the Web in the same
way. This paper deals with how to define and to execute a large set of federa-
tions simultaneously, each of which defines interoperation among resources taken
from different sets of resources. Such federation is called aggregate federation.
Our ad hoc aggregate federation framework enables users to flexibly select some
resources satisfying a specified condition from each set, to define a relation of
resources satisfying a specified condition as a subset of the Cartesian product of
these resource sets, and to define and to execute interoperation among resources
in each tuple in the defined relation.

Our meta relation works as a Web wrapper. There are lots of preceding re-
search studies on Web wrappers. Some of them are based on programming by
demonstration (PBD) technologies on Web pages. Internet Scrapbook [30] allows
users to re-edit Web documents by demonstrating how to change the layout of
a Web page into a customized one. Internet Scrapbook applies the same editing
rule whenever the Web page is later accessed for refreshing. Such a tool enables
the manipulation of layouts, but not the extraction and functional connection
of components. Bauer and Dengler [31, 32] have also introduced a PBD method
by which even naive users can configure their own Web based information ser-
vices satisfying their individual information needs. They have implemented the
method in terms of InfoBeans. By accessing an InfoBox with an ordinary Web
browser, users can wrap Web applications. By connecting channels among In-
foBeans on the InfoBox, users can also integrate them functionally. However, it
seems difficult for a user to reuse a part of a composite Web application defined
by some other user.

WebVCR [33] and WebView [34] provide a familiar VCR-style interface to
record and replay users’ actions. Users can create and update ‘smart bookmarks’,
which are shortcuts to Web contents that require a series of Web-browsing ac-
tions, by pressing a record button on their Web browser. Smart bookmarks can
therefore be used to record hard-to-reach Web pages that have no fixed URLs.
However, WebVCR does not support the definition of I/O ports for Web appli-
cations. For example, end-users cannot modify the parameters supplied to an
input form. WebView allows definition of customized views of Web contents.
When a user records a smart bookmark, he or she can indicate if some field in a
form is to be requested at playback time, rather than stored with the bookmark.
However it seems difficult for end-users to create a new view that integrates
different Web applications.

Sometimes Web applications revise the format of front-end HTML pages.
There are lots of preceding research studies on the induction of Web wrappers
based on examples of extraction from Web pages. However, there is little research
on allowing end-users to wrap Web applications and to define functional linkage
in the same environment.

W4F [35], which is a semi-automatic wrapper generator, provides a GUI sup-
port tool to define an extraction. The system creates a wrapper class written
in Java from a user’s demonstration. To use this wrapper class, users need to
write program code. DEbyE [36] provides more powerful GUI support tool for

Knowledge Federation over the Web Based on Meme Media Technologies 179

the wrapping of Web applications, and stores the extracted text portions in an
XML repository. Users have to use another XML tool to combine extracted data
from Web applications. LExIKON [37] learns an underlying relation among ob-
jects within a Web page from a user-specified ordered set of text strings in the
page. There is no GUI support tool for the join of two extracted relations.

8 Concluding Remarks

This paper has proposed a formal model for the aggregate ad hoc federation of
geographically distributed intelligent resources accessible through the Web. We
already proposed frameworks for ad hoc federation in [11, 29]. They are, how-
ever, applicable only to one-by-one federation. They can define interoperation
among intelligent resources over the Web as a set of interoperations between two
intelligent resources. They allow us to define an overall federation by repetitively
combining resources. This paper has dealt with a case in which we have large
sets of intelligent resources accessible through the Web. Each set is assumed to
consist of resources of the same type, and to be accessible through the Web in
the same way. This paper has focused on how to define and to execute a large set
of federations, each of which defines interoperation among resources taken from
different sets of resources. Such federation is called aggregate federation. Our
new framework for ad hoc aggregate federation is formalized based on meta re-
lations and their relational expressions, and enables users to flexibly select some
resources satisfying a specified condition from each set of resources of the same
kind, to define a relation of resources satisfying a specified condition as a subset
of the Cartesian product of these different resource sets, and to define and to
execute interoperation among resources in each tuple in the defined relation.

A typical example system to which our ad hoc aggregate federation tech-
nologies can be applied may be wireless sensor and actuator networks accessible
through the Web. Today’s sensor and actuator networks are assumed to be de-
signed for specific applications, having data communication protocols strongly
coupled to those applications. The sensor and actuator networks of the future,
however, are envisioned as comprising heterogeneous devices that offer assis-
tance for a wide range of applications. Sensors and actuators in such networks
need to interoperate not only with each other, but also with other resources over
the Web. Some applications using these networks may require instantaneous
analysis, strategic planning, and immediate action that maximizes the use of ac-
cessible resources. Example applications may include risk management such as
disaster relief and zoonosis control, user-customizable security and management
for office and home, customizable control of sensor and/or actuator networks,
user-customizable monitoring and control of home electronic appliances, and
so on.

Our framework for ad hoc aggregate federation provides a new formal basis
for instantaneous interactive definition and execution of interoperations among
more than one set of widely distributed intelligent resources for unpredictable
missions.

180 Y. Tanaka

References

1. Miller, J.A., Seila, A.F., Tao, J.: Finding a substrate for federated components on
the web. In: WSC ’00: Proceedings of the 32nd conference on Winter simulation,
San Diego, CA, USA, Society for Computer Simulation International (2000) 1849–
1854

2. Feng, L., Jeusfeld, M.A., Hoppenbrouwers, J.: Towards knowledge-based digital
libraries. SIGMOD Rec. 30 (2001) 41–46

3. Bass, M.J., Branschofsky, M.: Dspace at mit: meeting the challenges. In: JCDL
’01: Proceedings of the 1st ACM/IEEE-CS joint conference on Digital libraries,
New York, NY, USA, ACM Press (2001) 468

4. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35 (2003) 114–131

5. Gelernter, D.: Mirror Worlds. Oxford University Press (1992)
6. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.

Syst. 7 (1985) 80–112
7. Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda meets mobility. In: ICSE

’99: Proceedings of the 21st international conference on Software engineering, Los
Alamitos, CA, USA, IEEE Computer Society Press (1999) 368–377

8. Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media for
Editing, Distributing, and Managing Intellectual Resources. John Wiley & Sons,
Inc., New York, NY, USA (2003)

9. Tanaka, Y., Ito, K.: Meme media architecture for the reediting and redistribution
of web resources. In: FQAS. (2004) 1–12

10. Tanaka, Y., Fujima, J., Ohigashi, M.: Meme media for the knowledge federation
over the web and pervasive computing environments. In: Advances in Computer
Science - ASIAN 2004, Lecture Notes in Computer Science, 3321. (2004) 33–47

11. Fujima, J., Lunzer, A., Hornbæk, K., Tanaka, Y.: Clip, connect, clone: combining
application elements to build custom interfaces for information access. In: UIST
’04: Proceedings of the 17th annual ACM symposium on User interface software
and technology, New York, NY, USA, ACM Press (2004) 175–184

12. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic
formulas. In Meltzer, B., Mitchie, D., eds.: Machine Intelligence. (1970) 135–151

13. Plotkin, G.D.: A note on inductive generalization. In Meltzer, B., Mitchie, D.,
eds.: Machine Intelligence. (1970) 153–165

14. Delicato, F.C., Pires, P.F., Pirmez, L., da Costa Carmo, L.F.R.: A flexible web
service based architecture for wireless sensor networks. In: ICDCSW ’03: Pro-
ceedings of the 23rd International Conference on Distributed Computing Systems,
Washington, DC, USA, IEEE Computer Society (2003) 730

15. Hill, J., Horton, M., Kling, R., Krishnamurthy, L.: The platforms enabling wireless
sensor networks. Commun. ACM 47 (2004) 41–46

16. Terai, K., Izumi, N., Yamaguchi, T.: Coordinating web services based on business
models. In: ICEC ’03: Proceedings of the 5th international conference on Electronic
commerce, New York, NY, USA, ACM Press (2003) 473–478

17. Tai, S., Khalaf, R., Mikalsen, T.: Composition of coordinated web services. In: Pro-
ceedings of the 5th ACM/IFIP/USENIX international conference on Middleware,
New York, NY, USA, Springer-Verlag New York, Inc. (2004) 294–310

18. Gudgin, M.: Secure, reliable, transacted: innovation in web services architecture.
In: SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, New York, NY, USA, ACM Press (2004) 879–880

Knowledge Federation over the Web Based on Meme Media Technologies 181

19. Tsalgatidou, A., Pilioura, T.: An overview of standards and related technology in
web services. Distrib. Parallel Databases 12 (2002) 135–162

20. Zirpins, C., Lamersdorf, W., Baier, T.: Flexible coordination of service interaction
patterns. In: ICSOC ’04: Proceedings of the 2nd international conference on Service
oriented computing, New York, NY, USA, ACM Press (2004) 49–56

21. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Compatibility verification for web
service choreography. In: ICWS ’04: Proceedings of the IEEE International Confer-
ence on Web Services (ICWS’04), Washington, DC, USA, IEEE Computer Society
(2004) 738

22. Burners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284 (2001)

23. Brickley, D., Guha (Eds), R.V.: “resource description framework (RDF) schema
specification 1.0”. W3C Recommendation (2000) http://www.w3.org/TR/2000/
CR-rdf-schema-20000327/.

24. McIlraith, S., Son, T., Zeng, H.: Semantic web services (2001)
25. Howard, R., Kerschberg, L.: Brokering semantic web services via intelligent mid-

dleware agents within a knowledge-based framework. In: IAT ’04: Proceedings of
the Intelligent Agent Technology, IEEE/WIC/ACM International Conference on
(IAT’04), Washington, DC, USA, IEEE Computer Society (2004) 513–516

26. Benbernou, S., Hacid, M.S.: Resolution and constraint propagation for semantic
web services discovery. Distrib. Parallel Databases 18 (2005) 65–81

27. Waldinger, R.: Deductive composition of web software agents. In: Proc. NASA
Goddard Workshop Formal Approaches to Agent-Based Systems, Lecture Notes in
Computer Science, 1871. (2001)

28. Etzioni, O., Weld, D.: A softbot-based interface to the internet. Commun. ACM
37 (1994) 72–76

29. Ito, K., Tanaka, Y.: A visual environment for dynamic web application compo-
sition. In: HYPERTEXT ’03: Proceedings of the fourteenth ACM conference on
Hypertext and hypermedia, New York, NY, USA, ACM Press (2003) 184–193

30. Sugiura, A., Koseki, Y.: Internet scrapbook: automating web browsing tasks by
demonstration. In: UIST ’98: Proceedings of the 11th annual ACM symposium on
User interface software and technology, New York, NY, USA, ACM Press (1998)
9–18

31. Bauer, M., Dengler, D.: InfoBeans-configuration of personalized information. In:
Proceedings of the International Conference on Intelligent User Interfaces. (1999)
153–156

32. Bauer, M., Dengler, D., Paul, G.: Instructible information agents for web mining.
In: IUI ’00: Proceedings of the 5th international conference on Intelligent user
interfaces, New York, NY, USA, ACM Press (2000) 21–28

33. Anupam, V., Freire, J., Kumar, B., Lieuwen, D.: Automating web navigation with
the webvcr. In: Proceedings of the 9th international World Wide Web conference
on Computer networks : the international journal of computer and telecommunica-
tions netowrking, Amsterdam, The Netherlands, The Netherlands, North-Holland
Publishing Co. (2000) 503–517

34. Freire, J., Kumar, B., Lieuwen, D.: Webviews: accessing personalized web content
and services. In: WWW ’01: Proceedings of the 10th international conference on
World Wide Web, New York, NY, USA, ACM Press (2001) 576–586

35. Sahuguet, A., Azavant, F.: Building intelligent web applications using lightweight
wrappers. Data Knowl. Eng. 36 (2001) 283–316

182 Y. Tanaka

36. Golgher, P.B., Laender, A.H.F., da Silva, A.S., Ribeiro-Neto, B.A.: An example-
based environment for wrapper generation. In: ER ’00: Proceedings of the Work-
shops on Conceptual Modeling Approaches for E-Business and The World Wide
Web and Conceptual Modeling, London, UK, Springer-Verlag (2000) 152–164

37. Grieser, G., Jantke, K.P., Lange, S., Thomas, B.: A unifying approach to html
wrapper representation and learning. In: DS ’00: Proceedings of the Third In-
ternational Conference on Discovery Science, London, UK, Springer-Verlag (2000)
50–64

Towards Understanding Meme Media
Knowledge Evolution

Roland Kaschek1, Klaus P. Jantke2,3, and István-Tibor Nébel4

1 Massey University, Department of Information Systems ,
Private Bag 11 222, Palmerston North, New Zealand

R.H.Kaschek@massey.ac.nz
2 FIT Leipzig, Forschungsinstitut für InformationsTechnologien,

Postfach 30 11 66, 04251 Leipzig, Germany
jantke@fit-leipzig.de

3 Hokkaido University Sapporo, Meme Media Laboratory,
Kita 13, Nishi 8, Kita-ku, Sapporo, 060-8628 Japan

jantke@meme.hokudai.ac.jp
4 Universität Leipzig, AG Medizinische Lern- und Informationssysteme,

Ph.-Rosenthal-Straße 27, 04103 Leipzig, Germany
nebt@medizin.uni-leipzig.de

Abstract. Successful communication involves the individual utterances
being interpreted within a suitable context. Systems that fail to acquire
and share the context required for some topic are likely to fail to com-
municate successfully about that topic. Software systems populating an
open medium such as the Web are unlikely to have been designed or oth-
erwise prepared to communicate with each other, so if they are to com-
municate they face this challenge of acquiring and sharing the necessary
context. We consider this situation for software systems implemented as
meme media objects that contain representations of human knowledge.
The mentioned acquisition can be understood as an enhancement of the
knowledge representation they contain. Thus we consider establishing
successful communication among meme media objects on the Web as an
instance of knowledge evolution. The paper provides a conceptual frame-
work for studying knowledge evolution. That framework is based on a
particular interpretation of the concept of model. We give an example
of use of the framework in an e-learning case study within a medical
context.

1 Introduction

In the sequel we are going to talk about systems without elaborating on the
definition of that term, or the properties of systems. An elementary introduc-
tion into the system concept is in [3–ch. 4]. Capabilities of a system may include
the particular capability to respond to a given stimulus in different ways. An
explanation model for that is the existence of an inner system parameter that is
involved in the generation of the response to that stimulus. In particular if it is
assumed that that parameter is changing in its value or structure or both it is an

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 183–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

184 R. Kaschek, K.P. Jantke, and I.-T. Nébel

obvious consequence that the system’s stimulus-response behavior may be a rich
one. It may even never respond twice in the same way to a given stimulus that
appears repeatedly. For us knowledge is that inner system parameter as well
as the capability to use it adequately. Representations of knowledge may be con-
sidered for knowledge processing and its analysis. Represented knowledge may
be structured and that structure may result from the particular way of encoding
chosen for representation purposes. There is, however, more to it. Knowledge
can be distinguished as being focal or subsidiarily, i.e., as being that what corre-
sponds to the concern currently at hand or to its context respectively. It is well
understood that the subsidiary knowledge can be focused at and thus become,
focal, see, e.g. [39–p. 14]. However, in that case there will be a context to it.
That context gives it a connotation different from the one it had when it was
used as subsidiary knowledge. The consequence of that conception is, as Polyani
has put it (see [39–p. 6] “we can know more than we can tell”.

Presupposing information systems theory (IST), as outlined in [9], we can
define communication as the process in which communicators exchange signals
in a medium. According to Shannon (cited after [9–p. 43]) “the fundamental
problem of communication is that of reproducing at one point either exactly
or approximately a message selected at another point.” As noise occurs in the
medium and disturbs the signal the mentioned reproduction is not a trivial
task. The information used for reproducing the message is considered part of
the communication context. The communication is considered as successful if
at least one of the communicators achieves its communication goals. Clearly,
if these goals involve that a sender of a signal wants the receiver of it to do
something particular then the context required for understanding that particu-
lar thing and actually doing it may be substantial for the communication to be
successful. We are going to focus on only one communicator and propose a the-
oretical framework for encoding and understanding its focal knowledge. We are
going to take the position of an observer who has access to the communicator’s
knowledge.

Memetics is seen as outlined in the books by Richard Dawkins [10], Susan
Blackmore [5] and Yuzuru Tanaka [37]. Richard Dawkins has directed the world’s
attention to the phenomena involved in cultural inheritance and has introduced
his seminal concept named “meme”. Susan Blackmore has taken the initiative
to discuss the relevance of Dawkins’ perspective from a psychological and from
a somehow philosophical point of view telling us all that we are affected by
Dawkins’ work. It is, naturally, up to you whether or not you feel personally
affected by memetics. The second author’s paper [18] may be seen as a further
contribution to this discussion. Yuzuru Tanaka, fortunately, has seized Dawkins’
suggestion and developed it towards concepts, implementations and applications
in computer science. He has coined the key term meme media. The present
approach relies on Tanaka’s trend-setting work taking Dawkins’ and Blackmore’s
contributions seriously. We contribute to federations over the Web, i.e., a Web-
mediated communication and cooperation of software agents that are neither
designed nor prepared for that task. We also contribute to the adaptation of a

Towards Understanding Meme Media Knowledge Evolution 185

software assistant to a human user. For both of these we suggest a particular
way of understanding knowledge and its evolution.

As predicted by Mark Stefik [36], there is a tendency towards externalization
of knowledge into interactive electronic media, a trend which is considerably
boosted by the spread of the Internet. Stefik expounds that the most commonly
understood goal of AI is to build intelligent, autonomous thinking machines.
Obviously it is a reasonable alternative to focus more on collectives of intelli-
gent systems that interact with each other in a knowledge medium. The latter
enables what we call meme media pools (for pools of medical therapy planning
knowledge, see [11], [26] and [21], e.g.). Meme media pools are mushrooming.

Meme media objects or meme media, for short, are the inhabitants of these
pools. In [18], we asked: How are they? Are they doing well? Today, we are able to
have a closer look and to ask a little more precisely: How do they evolve? Taking
Dawkins’ and Blackmore’s contributions [10] and [5] seriously means to ask for
the evolution of knowledge. In the spirit of Tanaka [37], every pool of meme me-
dia brings with it the potential of knowledge evolution. A meme media pool is set
up properly, only if the represented knowledge evolves. Since without adapting
to the changing conditions the value or usability of knowledge will diminish and
we have set up just another heap of data. That problem is familiar to all large
enterprizes. They all have huge data bases, but suffer from a lack of knowledge.

When Tanaka’s book [37] appeared, it seemed that the time has come for
our data –or, at least, for some of them– to wake up and begin to evolve. But
does this really happen today? Where are the pools of evolving knowledge me-
dia? We do need a framework to talk about the knowledge that is externalized,
to discuss potentials and problems in much more detail, to identify core mech-
anisms of knowledge evolution (see [20], [19]), and to validate evolution. The
state of the art is such that knowledge resides mainly in humans, who also serve
as the sources of new knowledge. Meme media technologies provide the tools for
representing externalized human knowledge, making the meme media represen-
tations accessible to wide human communities, so that humans can share, edit
and re-distribute meme media objects, thus, fostering knowledge evolution.

Our approach goes beyond the limits of that state of affairs. We focus on
knowledge of systems such as software agents. Since we use human knowledge
processing as archetypical for knowledge processing of systems in general we use
models in two roles. Firstly, models serve as representations of focal knowledge.
Secondly, models serve as the unit of change or evolution, i.e., as meme objects.
Below we are going to presuppose a particular conception of model that appears
as useful for understanding knowledge evolution. In that conception, however,
models are composite objects, i.e., sets of so-called judgments. For illustration,
we refer to medical therapy knowledge and planning as in [11], [21] and [26].

Paper Outline. In the next section we focus on certain aspects of informa-
tion systems development. In section 3 we propose a framework of modeling. In
sections 4 and 5 we discuss knowledge evolution and a case of knowledge evo-
lution in an e-learning application respectively. We conclude the paper with a
summary and suggestions in section 6.

186 R. Kaschek, K.P. Jantke, and I.-T. Nébel

2 Aspects of Information Systems Development

Historically, following a very wide definition (that according to [14], p.11, is due
to Langefors) the term information system (IS) was defined as “...a technically
implemented medium for the purpose of recording, storing, and disseminating
linguistic expressions as well as for the support of inference making.” With a
wide understanding of language in mind and interpreting the term ‘linguistic
expressions’ as valid sentences in given languages this definition is still wide
enough to cover kinds of computer application that nowadays are considered as
different from each other, such as database systems, workflow management sys-
tems, knowledge management systems, entertainment systems, learning systems,
and the like.

Certain problems in the context of this paper would be considered as non-
trivial, meaning that they can be decomposed into subproblems until a level of
nesting is achieved at which the problem solver still oversees how to combine
the solutions of subproblems for achieving a solution to the initial problem, and
such that all the simple problems, i.e., those that are not decomposed into other
problems, can be solved. It is clear that the class of problems that are trivial for
humans is not empty; everyday problems belong to it such as “print a particular
file”, “reply to your partner’s email from last Monday”. It is also clear that
the class of problems that are non-trivial for humans is not empty. It contains
,for example, the so-called wicked problems. Wicked problems are those problems
whose definition or concept of solution are very likely to change as soon as actual
problem solving starts. A typical example of a wicked problem is the creation
of a computer application that is supposed to aid humans in doing a task that
previously was not done with computer aid. Since there is no experience in that
area regarding what aid a computer application could provide, it is likely that
the ‘whole thing’ will be considered differently by the potential users once they
have had access to a prototype application and can gather experience regarding
what helps and what doesn’t.

Planning in complex dynamic environments, such as planning to resolve
disturbances in large technical installations is typically a wicked problem [1].
You necessarily start with incomplete information about the problem you are
facing, and during planning you repeatedly learn that your understanding of the
task to be resolved needs revision. There are recent attempts to attack plan-
ning problems for medical therapy [11], [21] and [26], another complex, dynamic
domain, using meme media technologies. Wicked problems are related to knowl-
edge evolution issues. We feel that a computer application suited to aiding the
solution of trivial problems could best be referred to as a ‘tool’, comparable to
a hammer, scissors, etc. On the other hand we feel that a computer application
best suited for aiding the solution of non-trivial problems should be referred to
as ‘assistant’. In short tools are controlled by humans, whereas assistants provide
cooperative aid for human thinking.

The problems for which tools and assistants are used differ from each other.
This has considerable impact on what these application kinds are, and how
they are used. By their nature, assistants need to be more interactive than

Towards Understanding Meme Media Knowledge Evolution 187

tools. They also need to be more capable of adapting themselves to users, as
well as developing the capability to figure out an appropriate substitute for the
intended message from the disturbed signal that is actually perceived during the
communication. The single characteristic that best shows the difference between
tools and assistants is how one may judge their successful use. A tool was used
successfully if it achieved what the human asked it to do. An assistant was used
successfully if it actively helped the human to achieve his or her goal. As most
humans do not have the capability of saying clearly what they want in a complex
situation the limitations of tool usage are obvious and a demand for assistants
is growing. Adaptivity and intelligence in our view are properties required for
modern computer applications because of the inherent limitations of tool usage
given the ever growing complexity of tasks to be solved with computer aid.

3 A Framework for Modeling

We relate modeling to knowledge evolution, as we consider the knowledge to
evolve in a context of interacting systems that aim at exchanging knowledge
and therefore represent parts of it as models. For that to take place it must
be assured that the rules for encoding and decoding models are shared among
the communicators. A well-known mechanism for achieving that is the use of
consensually defined and agreed-on semantic models, i.e., conceptual frameworks
for conceptualizing domains. As the context of utterances cannot be made fully
explicit the represented knowledge in question must not be misunderstood as
comprising objective, general laws. Rather it needs to be understood as culture-
dependent conventions and consequences thereof. Knowledge about an object
is then represented in a model of that object in so far as the model correctly
reflects those conventions and their consequences.

Modeling in this paper is understood as creating, using, analyzing, maintain-
ing, and retiring models. We model object O by a model M if we want to know
something about O but for one or another reason cannot, must not, dare not
(or similar) investigate O itself, or if it would be possible but not economical to
investigate O itself. Modeling is thus about creating and using substitute objects
M for original objects O. To be more specific, the substitute objects M in this
paper are conceptual, i.e., they are often perceived as cognitive entities. The
original O can be a real world object or a cognitive object. We do not go into
more detail regarding when one should follow a realistic approach (according to
which real world objects exist independent of whether humans or other cognitive
beings observe them) or a constructivist approach (according to which objects
are creations of individual minds). We do limit ourselves to the models being
individual mental constructions.

Following Stachowiak [33, 34, 35], we consider the following properties as char-
acteristic for models:

1. Mapping property, saying that every model is a model of something, its
original.

188 R. Kaschek, K.P. Jantke, and I.-T. Nébel

2. Truncation property, saying that models usually lack of certain character-
istics that their originals have and that this makes them useful for modelers.

3. Pragmatic property, saying that the justification of using a model is sub-
ject to a certain purpose, usage conditions, a period of time, a particular
user and the like.

Stachowiak [34] has put forward the so-called principle of methodological
order according to which the original always temporally precedes the model. We
do not share his view, because it excludes a standard terminology in which one
talks about design models. These do in fact temporally precede their original, i.e.,
the actual implementation. Wieringa [41] distinguished descriptive models from
prescriptive ones. We concur with his distinction, but express it slightly different.
In our view, being descriptive, prescriptive, and the like is not a property of the
model. Rather, these terms are reference modes for how the model is related
to its original, expressing that modelers use the model to describe the original, or
to prescribe it, and so on. We identify further reference modes such as idealizing,
forecasting, and constituting. We distinguish our position on models from that of
Stachowiak in one further respect: He focused on the truncation property, seeing
in it an important ingredient of models. While we accept this importance, we also
believe that models in general have certain properties that their originals don’t
have and that this is often crucial for their usability. For example, in [22] it was
argued that the usability of a map significantly depends on the material from
which it is made. We refer to that property of models as the plenty property.

The analysis and synthesis method of the ancient Greek philosophers (see,
e.g. Polya, [31–pp. 141] can be made effective for modeling information system.
Thus the modeling procedure that is known as the method of Langefors consists
then in modeling the system components by their input-output behavior and
the components’ interaction as a flow- or message exchange5. If the components
and their interaction are modeled properly, they allow the reconstruction of
the input-output behavior of the system as a whole. It is often considered an
essential feature of systems that the interaction of their components gives rise to
properties that cannot be attributed to a single one of the system components.
Such properties are called emergent.

So far we have taken a relational approach to explaining the term model,
i.e., we have related models to originals and provided a brief discussion of the
properties of that relationship. We take now an ontological approach to the con-
cept ‘model’ and define it in terms of a more elementary concept. We make
use of a naive understanding of the concept ‘concept’ (a more profound treat-
ment of it is available in the work of Pfänder [30] and Kamlah and Lorenzen
[23]). We reuse the theory of judgment in the form published by Alexander
Pfänder in 1921, [30]. A judgment according to Pfänder’s theory is a tuple
U = (S, P, C, I). Its meaning is that actor I relates the predicate notion P to
the instances of the subject notion S in a way specified by the copula C. The
copula C specifies whether the predicate notion is accredited to or denied from
5 It would be more correct to use the term signal exchange. See, for example [32], for

a more in-depth discussion of this point.

Towards Understanding Meme Media Knowledge Evolution 189

the instance set of the subject notion, i.e., the extent of S. The copula also
specifies whether the predicate notion is related to all instances of the subject
notion or only to particular ones. Pfänder defines the modality of a judgment
as the degree of confidence of the I in the judgment. The judgments (employing
the obvious notation) (Gretchen, graut es vor Heinrich, +, Gretchen) and
(Katze, grau in der Nacht, A+, P eter) mean that Gretchen and Peter judge
respectively “Heinrich, I am terrified by you!”6 and “All cats are gray in the
dark.” Provided a judgment is uttered then according to Austin’s speech-act-
theory it would be considered as verdictive utterance, see [2–p. 169]. Note
finally that in our view the subject notions that give rise to a proper judgment
are culture-depending, as is the case with the predicate notions and the copulae.

A signature is a 4-tuple Σ = (Ω, F , R, A) such that Ω = {Ω1, . . . , Ωm}, F =
{F1, . . . ,Fn}, R = {R1, . . . ,Ro} are respectively sets of sort symbols, function
symbols, and relation symbols, and A is a mapping. The maping associates with
each function symbol f and each relation symbol r non-negative integers a(f)
and a(r) and so-called arities A(f) = (i1, . . . , ia(f), i), and A(r) = (j1, . . . , ja(r))
where i1, . . . , ia(f), i ∈ {1, . . . , m}, and j1, . . . , ja(r) ∈ {1, . . . , m}. A structure
S over a signature Σ = (Ω, F , R, A) is a triple S = (S, FS , RS) such that
S = {S1, . . . , Sm}, FS = ∪{f1

S, . . . , f
b(f)
S | f ∈ F, b(f) a positive integer},

RS = ∪{r1
S , . . . , r

b(r)
S | r ∈ R, b(r) a positive integer} is a set of sets, functions,

and relations, such that fS : Si1 × . . . × Sia(f) → Si, ∀fS ∈ FS, with A(f) =
(i1, . . . , ia(f), i), and rS ⊆ Sj1 × . . . Sja(r) , ∀rS ∈ RS , with A(r) = (j1, . . . , ja(r)).
Given such a structure S = (S, FS , RS) the set ∪S is called its support and,
if no confusion is likely, S is referred to as S. For each function f ∈ FS and for
each relation r ∈ RS , the tuples A(f) and A(r) are called the signature of f
and r respectively. For each s ∈ S the elements of s are said to be of sort s.
Note that we allow for multiple instantiation of function symbols and relation
symbols by functions and relations respectively for simpler encoding of semantic
models as structure over a signature.

For an illustration of practical relevance, consider the perhaps best known se-
mantic model: the ER-model. We introduce the signature (Ω, F , R, A) with Ω =
{entity type, value type, relationship type}, F = ∅, and R = {role, cE , cR}7.
The arities are a(role) = a(cE) = a(cR) = 2, and A(role) = (relationship type,
entity type), A(cE) = (entity type, value type), A(cR) = (relationship type,
value type). An entity-relationship diagram is then a structure over that signa-
ture. Consider for an illustration the example in figure 1.

The schema in figure 1 is a structure S = (S, FS , RS) over the signature given
above, i.e., S = {entity type, relationship type, value type } with entity type =
{project, high risk project, classified project,employee, department, group},
relationship type = {is involved in, A1, A2, G1, G2}, and value type = ∅.

6 Johann Wolfgang von Goethe, Faust, Part I, see [31], line 4610:“Heinrich! Mir graut’s
vor Dir.”

7 As the role concept is frequently used and fairly understood we only briefly explain
cE and cR. These are characteristics that associate value types with entity types or
relationship types respectively.

190 R. Kaschek, K.P. Jantke, and I.-T. Nébel

project employee
isinvolvedin

leader

collaborator

context

high risk project

classified project

departmentgroup

entity type

relationship
type

role

generalization

aggregation

Legend
G2

G1

A1

A2

Fig. 1. Simple ER-schema

We have furthermore FS = ∅, and RS = {roleS , cES , cRS} with roleS =
{context, leader, collaborator, super, sub, whole, part}. We make here use
of the convention that the roles occurring in aggregation and generalization are
not explicitly represented in an ER-schema. We deviate from common prac-
tice, however, by explicitly showing names for aggregations and generalizations
in schemas. In the example we have cES = ∅ = cRS as well as context =
{(is involved in , project }, collaborator = {(is involved in , employee)},
leader = {(is involved in , employee)}, super = {(G1 , project), (G2, highrisk
project)}, sub = {(G1, high risk project), (G2, classified project)}, whole =
{(A1, group), (A2, department)}, and part={(A1,department),(A2,employee)}.

A database over an entity relationship schema is an interpretation of the
schema in the category of sets with relations as morphisms.8 Such an interpre-
tation means that all graphical items in the schema apart from its roles and
characteristics are interpreted as sets and the roles and characteristics are inter-
preted as relations between these sets.

Let I be a modeler, Σ = (Ω, F , R, A) a signature, and S = (S, FS , RS)
a structure over Σ. Then I can encode the structure S uniquely as a set of
judgments. The following sets of judgments together yield what is required:

8 One might wish to refer to [8] as an introduction to category theory.

Towards Understanding Meme Media Knowledge Evolution 191

– {(s, ∃, +, I) | s ∈ S} ∪ {(fS, ∃, +, I) | fS ∈ FS} ∪ {(rS , ∃, +, I) | rS ∈ RS};
– {(fS , AfS , +, I) | fS ∈ FS}, where AfS is the predicate ‘the function fS has

the signature fS : Si1 × . . . × Sia(f) → Si if the function symbol f that it
instantiates has the arity A(f) = (i1, . . . , ia(f), i)’;

– {(rS , ArS , +, I) | rS ∈ RS}, where ArS is the predicate ‘the relation rS has
the signature rS ⊆ Si1×. . .×Sia(r) if the relation symbol r that it instantiates
has the arity A(r) = (Si1 , . . . , Sia(r))’;

where it is assumed that the predicate notion ‘∃’ means that I with respect to
a universe of discourse, UoD, has obtained a definition of the subject notion
that allows him or her to classify the phenomena in UoD as either belonging
to the extent of the subject notion or not. For other semantic models such as
class diagrams, Petri Nets, and State Charts constructions work that are similar
to the one used here for the ER model. Below we can thus focus on structures
over a signature as generic conceptual framework for describing the majority of
models that occur for example in systems development.

4 Modeling Knowledge Evolution

A modeler will in general need several attempts to arrive at a satisfactory so-
lution. If the problem were simple one then he would not start modeling in the
first place. He will make his later solution attempts depend on what he has
learned from earlier ones. That way he can invest the acquired knowledge to
make new and better models. To better understand such modeling processes we
take a linguistic view and consider models (and in particular structures over
a signature) as language artifacts. We then may discuss models in terms of
their syntax, semantics, and pragmatics.9 Since we have to consider sequences
of models we are going to analyze modeling processes in these terms. Model-
ing thus can be understood as a trajectory in a three-dimensional space with
dimensions:

– syntax, i.e., modeling activities target the model’s compliance to the current
signature or to a newly chosen one;

– semantics, modeling activities target the model’s meaning; and
– pragmatics, i.e., modeling activities target the appropriate use the modeler

can make of the model.

In this paper we focus on the semantics dimension and only briefly touch
the other dimensions. For explaining the syntax dimension we consider soft-
ware development as an example of a modeling process. In a software process
one will, in one way or another, and whether documented as a physical ar-
tifact or not, create a requirements model (describing the customer require-
ments), a conceptual model (prescribing the application or business content of
the system that is to be implemented), a design model (prescribing a computer

9 Refer for example to [27] for an explanation of these basic linguistic concepts.

192 R. Kaschek, K.P. Jantke, and I.-T. Nébel

based system for implementing the conceptual model), and an implementa-
tion. The software process provides means for model mapping, i.e., for creat-
ing a model M ′ that in that software process follows immediately model M .
To explain the pragmatics dimension we consider first the planning processes.
Obviously plans are supposed to be proceeding models used in a prescriptive
reference mode. Constructing a single model, i.e., a plan may be a complex
process. The construction of a model may last quite some time, as complex
reasoning is necessary. In some cases the time needed to create the model can-
not be ignored for example, because the plan must be executed in a changing
universe of discourse. A plan may be worthless if creating it takes too much
time.

Our second point regarding the pragmatics concerns the role of models as sub-
stitute objects. That role suggests that in modeling one needs to have a mapping
that allows the reformulation of a problem specified in terms of the original into
a problem as specified in terms of the model. The model would be considered
as satisfactory if for that problem a solution can be found and propagated back
into the original, thus delivering a solution for the original problem. Following
terminology used by Stachowiak [35], here we give the name icomorphism to the
pair of mappings that enables this propagation and back propagation. It is clear
that, in the case where a model is not satisfactory all the parameters mentioned
here may be modified.

With respect to the semantics dimension design primitives (see for exam-
ple [38, 6, 4]) are suggested in order to realize a controlled and stepwise mode
of model manipulation. That view also is present in [19]. What we want to call
knowledge evolution is the trajectory of modeling processes as projected onto the
semantics dimension. In considering knowledge evolution, we therefore presup-
pose a signature Σ = (Ω, F , R, A) and consider a sequence {Mi}i∈I of structures
over that signature.

In modeling, one can try to benefit from methods like simulated annealing by
following a trial-and-error approach in which for exploration purposes all design
primitives are applied in a round-robin-style, the quality of the solutions that
become possible is assessed, and then, as a direction for improving the model,
whichever design primitive implies the largest gradient of solution improvement
is actually imposed on the model. Obviously that approach can be tailored by
associating weighting factors to the design primitives that impact the solution
assessment. That way the application of some of the design primitives may be
favored or disadvantaged. If one were to include deterioration of knowledge,
using some appropriate infrastructure, and combine that with a refreshment
strategy –like the one just described– then it should become possible to simulate
knowledge evolution.

If knowledge evolution is considered as a co-evolution of human understanding
of a problem and machine awareness of what the human partner wants then it
is clear that a formal conception of machine awareness in the sense of semantics
of artifacts does not work, as in general one cannot check whether a model that
is formally represented in a computer is equivalent to the model that a human

Towards Understanding Meme Media Knowledge Evolution 193

actually is using.10 Also it cannot be guaranteed that humans use consistent
models.

In approaches to wrapper induction as used for illustration in [19], elemen-
tary steps of enhancement mean to replace some plug-in meme media object
that represents a certain formal language by another one. In terms of logic pro-
gramming, a definition of a formal language defining predicate is substituted by
another one. In algebraic terms, this is easy to circumscribe. The signature of the
cited wrapper induction problem has a finite number of sorts for certain delimiter
languages. Definitions of a constant of one sort are modified to transform some
model M into a successor version M ′. Termination of the resulting sequence of
successor models is only guaranteed under certain strong assumptions [13].

Instead of a summary of the rather wide discussion above, let us contrast
the approach developed to more conventional ‘Algorithmic’ or ‘Computational
Learning Theory’ [18]. When systems learn, one might assume that this is seen
as acquiring some knowledge. In fact, the underlying main scenario is well-
structured:

1. There is assumed some target object to be learned.
2. The learning system is fed in information.
3. In response, it constructs hypotheses.
4. A hypothesis is true, if it correctly describes or sufficiently approximates the

target object.

In such a scenario, the knowledge is sitting in the system’s hypothesis and its
quality is determined by a semantic mapping from hypotheses to originals. There
are, for sure, problems to which such an approach is appropriate. However, the
authors address more difficult –even wicked– problems where we would like to
be able to say ‘he has got it’. Whether or not some partner –a human or an
‘intelligent’ computer assistant– understands me, my needs and my desires is
rarely describable by pointing to a particular point in a semantic space. Instead,
it shows when we are talking to each other, when we are working together, or
when we arrive together at some problem solution.

The following section sketches a case study in e-learning (in a medical context)
where the evolution of knowledge can hardly be understood as arriving at a point
where a certain data structure determines a particular target object. The system
can be deemed to have ‘got it’, if it successfully guides a human, who is both a
learner and a patient, through a particular virtual problem solving scenario.

10 Problems of this type are inherent to computer science, because application domains
which are usually not formal at all are reflected by completely formal models that
are mathematical in spirit, as long as they remain on a conceptual level, and that are
discrete, finite and even digitalized, when they are reaching the level of implementa-
tion. A typical representative is known as Church’s Thesis claiming the unprovable
equivalence of ‘the computable’ and what is computable, at least on a conceptual
level, by means of any of the classical computational apparatus such as Church’s
λ-Calculus, Post’s Algorithms, Partial-Recursive Functions, Turing Machines and
the like.

194 R. Kaschek, K.P. Jantke, and I.-T. Nébel

5 A Case of e-Learning in a Medical Context

One of the problems in certain medical domains is to educate and train patients
to behave appropriately when particular symptoms of a specific disease they are
suffering from suddenly occur. For German patients who are suffering from dia-
betes mellitus, a hypoglycemia education program [28, 29] has been developed,
implemented, brought into regular applications and evaluated. For more detail,
interested readers are directed to the references. Using this program, learners
are supposed to deepen their knowledge and understanding of how to behave
in a case of a severe hypoglycemia. So, at a first glance, we are dealing with a
rather simple e-learning task in a fairly restricted domain. However, the majority
of patients are elderly people with low or literally no computer literacy. They
need particularly careful treatment. It is desirable not just to present them with
a learning tool, but to provide a computer system that assists them by being
intelligent in the sense of adapting to each patient’s peculiarities.

The key idea is to exploit the fact that all learners are at the same time
patients within a rather limited medical context. As soon as a learner gets in
contact with the e-learning system, she or he is seen as a patient. Medical do-
main knowledge is used to infer knowledge about the patient. Figure 2 shows
an additional development tool that is available for knowledge evolution studies.
A certain learner / patient overlay model is assumed. Window A of figure 2 is

Fig. 2. The Patient Profiling Tool Interface

Towards Understanding Meme Media Knowledge Evolution 195

showing the original model. Domain knowledge is called upon to complete the
recent variant of the user model. Window B gives an impression of the under-
lying ontology’s terms. The system’s inference module may be called upon for
user model completion. The history of this approach [28, 29] may be described
in terms of logic and inference as inductive completion of a model over one
signature by employing knowledge about another related signature.

Though this knowledge is always hypothetical to some extent, it is used to
tailor the system’s behavior. When the system learns or guesses successfully, the
human-computer interaction proceeds more smoothly. This is reflected in the hu-
man learner/patient having less of a need to ask back (see figure 3). The human-
computer interaction becomes more pleasant and satisfactory. Satisfaction and
fun, not torture, is seen as a key to engaging a learner’s mind [25]. The crux is
the way in which a current (learner / patient) model may be changed. The mech-
anisms of model manipulation are seen as the key to knowledge evolution [19].

In our present case study, there is an initial model M0 of the learner con-
taining only those data from her / his patient database record that is taken for
granted. The signature is fixed and is mostly determined by the list of parame-
ters taken into account. In traditional terms, those parameters may be called
attributes. If Mi is a patient model and a is an attribute, then its current value
is denoted as Mi.a. Attributes may be null. The provided values, however, are
pairs of some ground value of the respective sort and some confidence c. For
convenience, instead of null attributes one might assume any default value with
confidence 0. In practice, initial models M0 are usually highly incomplete. In the
medical domain, the underlying domain knowledge frequently originates from
large clinical trials. This knowledge rarely provides ‘truth’ in an objective sense.
Rather, it consists of models that are felt to be supported by evidence obtained
from the trials. Based on data in a model Mi and on domain knowledge, one
may employ rules that suggest Mi+1.a = (vi+1, ci+1). If then Mi.a = (vi, ci) and
ci+1 > ci then the assignment Mi+1.a := (vi+1, ci+1) is executed.

Figure 3 is taken from [28], and shows results from a careful evaluation. The
system that uses learner model induction was run in parallel with a static sys-
tem without this type of adaptivity. In the conventional system, the system’s
knowledge underlying the human-computer interaction does not change. In con-
trast, the original learner model of the adaptive system usually changes during
human-machine interaction. The system’s knowledge evolves.

Fig. 3. Evaluation by Comparison to a System Version without Learning

196 R. Kaschek, K.P. Jantke, and I.-T. Nébel

6 Summary and Suggestions

In this paper modeling is understood as creating, using, analyzing, maintaining,
and retiring models. The crux is that we are making the step from modeling being
performed by humans to computerized modeling. When humans gain knowledge
through modeling, there should be cases in which computers come up with new
knowledge through modeling as sketched above.

From a memetic point of view, we are releasing meme media objects for a
life in the wild of computer networks [18]. We may expect knowledge evolution
to take place. If this truly happens, we have left behind the state of the art
where mostly humans played the role of knowledge sources [36]. The main aim
of the present paper is to introduce a suitable terminology seeing modeling from a
sufficiently general perspective. According to the authors’ terminology, modeling
–and knowledge evolution– may proceed in three different dimensions named
syntax, semantics, and pragmatics.

The approach is still having teething troubles. Though there is already an
application sketched in section 5, the treatment in the preceding sections is
still preliminary. The authors confined themselves to an investigation of only
semantics. Even for that dimension, supplements and completions are necessary.
The transition steps from a model M to its successor M ′ deserve some more in-
depth investigation. For instance, the case study of section 5 enjoys a termination
property within the dimension semantics. Over a given medical context, only
finitely many model enhancements are possible. This is due to four important
facts. First, every enhancement changes one (or only a finite number of) attribute
value(s). Second, attribute values are only changed in cases where the new value
has a higher confidence than the value before. Third, confidence values have a
step width with a fixed finest granularity, due to characteristics of clinical trials.
Fourth, there is a maximal confidence value assumed. It seems that the case
study under consideration has a peculiarity which, in terms of rewriting [16],
may be seen as termination or even as confluence.

One might go even further and expect that the rewriting systems perspective
is setting the stage for investigation of fundamental problems in knowledge evo-
lution. Let us give an example. In rewriting systems one carefully distinguishes
confluence from local confluence [16]. In cases where systems are locally conflu-
ent, but not confluent, early rewriting steps may be decisive for what can be
reached in the future. This may be critical when knowledge evolution is seen as
rewriting and confluence is not guaranteed.

Future research work should focus on a more holistic approach investigating
the proposed three dimensions in their mutual interdependence, thus, seeing
knowledge evolution along pathways through this three-dimensional space.

Among the many interesting phenomena to be studied, the authors are very
much interested in templates of pathways, whether or not those exist and what
they might possibly reveal about the way in which knowledge evolves. However,
to speculate, we need a language to express our dreams, our guesses and our
doubts. For meme media knowledge evolution, we propose a terminology like
the one sketched here.

Towards Understanding Meme Media Knowledge Evolution 197

6.1 Continuing Discussion

The evolution metaphor can be extended somewhat to address more fully how
the process of knowledge change works. In Biology one uses the two levels of
phenotype and genotype and locates the driving forces and possibilities of expla-
nation of observed modifications on the genotype. It seems that by analogy one
can relate phenotype and focal knowledge, and genotype and subsidiary knowl-
edge. Therefore an observer of a system that embodies evolving knowledge, if
he or she does not have privileged access to the subsidiary knowledge of the
observed system, might be prevented from understanding the system behavior,
and in particular its communication.

Model evolution must not be confused with knowledge evolution, as knowledge
does not reside in the models. Knowledge may result from a usage of the evolving
models. There is no knowledge without the models’ usage. This is similar to the
need to play a record (nowadays, one would say a CD or DVD) in order to “get
the music out”, as discussed at length by Hofstadter [15].

As discussed in more detail above, the judgments made to build a model usu-
ally do not reflect anything so ambitious as the ‘truth’. They represent opinions
on which a learning system’s activities are to be based. The quality of the model
is not its relation to some particular semantic target, but the quality of the
system’s behavior relying on those judgments. When an assistant system suc-
ceeds in modeling to some extent such that our cooperation –between me and
the system– also succeeds, this does not necessarily mean that the system got
any ‘truth’ about me. It just means that the judgments that were made work
well for the particular purpose. They can be evaluated only with respect to this
purpose. There are good reasons to regard the system’s knowledge as evolving if
it collects judgments such that after a certain time it assists its user better than
before.

6.2 Towards Insights and Messages

What does the discussion above buy us? There is a need to answer this question,
if not today, then at least in the near future, at least. Here is the authors’ first
attempt. If you compose meme media objects, for instance, if you plug Intel-
ligentPad objects together, you may arrive at something new you have never
had before. It may turn out to be useful. You may keep it, others may (re-)
use it, there may be dissemination and re-editing of what you built, and it may
last for a long time. But it seems misleading to say that the knowledge is ex-
ternalized and located in your composite meme media object. There is no way
to squeeze any drop of knowledge out of the construct. We need to see knowl-
edge evolution from the higher perspective of the media objects’ application.
This is one important insight and a guideline for research. Implications are as
follows. Data mining, statistics, probability theory or whatever you use in mod-
eling is never a discipline of ‘knowledge discovery’, ‘knowledge construction’,
‘knowledge evolution’ or anything like that. No doubt, all these disciplines are
important. But in the best case, they provide only the technicalities needed for

198 R. Kaschek, K.P. Jantke, and I.-T. Nébel

model construction along dimensions like semantics or syntax. We arrive at the
knowledge evolution issue, when we deal with the technicalities for the purpose
of problem solving in a particular domain. Therefore, it does not make sense
to evaluate particular model construction techniques for their potential to sup-
port knowledge evolution. Evaluation with respect to knowledge evolution needs
to be domain specific. The evaluation problem deserves further research and
experimentation.

To go even further, it seems possible to talk about ‘understanding each other’
with the particular meaning that models that are created, and judgments that
are built provide a basis of pleasant cooperation between a human user and
an IT system that was designed to be the user’s assistant. The question of
understanding each other bridges between the research reported here and the
topic of ‘federation over the Web’. The focus of research and development under
the banner of federation is on scenarios where systems meet that have not been
designed and prepared to meet each other. One might see ‘understanding each
other’ as the key problem to be resolved for federation over the Web .

6.3 A Case of Learner Classification

The fact that the present approach does indeed matter can be illustrated by
means of a case of learner classification. In [12], the authors carefully discuss the
state of the art in learner modeling for adaptive e-learning. The citations about
the different perspectives and their discussion of the need of learner modeling
may be seen as being very informative.

Esposito et al. [12] develop an approach to learner classification that adopts a
data mining perspective [7, 24]. They rely on the assumption that every learner
is of a certain learner type and that this type has to be discovered. This sounds a
bit like the idea of finding out some ultimate truth about a human learner with
the aim of taking this truth as a basis for a system’s subsequent adaptation.
There is a certain profiling framework in which every learner or, more precisely,
her / his profile may be represented as a vector over a given list of attributes.
This is coming close to conventional overlay models.

Esposito et al. aim at measuring the accuracy of the profile extractor, i.e.
evaluating how close their profile extractor’s learner model approaches the truth.
According to [12–p. 44], evaluation was performed by a domain expert who clas-
sified the students. His classification was compared to the computer system’s
learner model. The system was been found to model quite well. However, ac-
cording to the present authors’ approach outlined above, there is no truth to
be discovered. Consequently, there is nothing against which the models gener-
ated may be directly compared. Instead, a learner model seen and represented
as a finite set of judgments is evaluated by investigating the effect it has on
the quality of human-computer interaction. From the perspective of the present
approach to modeling, the system’s knowledge evolution may advance from one
set of judgments to another one without any convergence to an ultimately true
target.

Towards Understanding Meme Media Knowledge Evolution 199

References

1. Oksana Arnold. Die Therapiesteuerungskomponente einer wissensbasierten Sys-
temarchitektur für Aufgaben der Prozes̈führung, volume 130 of DISKI. infix, 1996.

2. John Longshaw Austin. Zur Theorie der Sprechakte. Philip Reclam jun.,
Stuttgart,1979.

3. Niv Ahituv, Seev Neumann. Principles of Information Systems for Management.
Wm. C. Brown Publishers, Dubuque, IA, third edition, 1990.

4. CarloBatini,StefanoCeri,andShamkantNavathe.ConceptualDatabaseDe-sign.The
Benjamin / Cummings Publishing Company; Inc., Redwood City, California, 1992.

5. Susan Blackmore. The Meme Machine. Oxford University Press, 1999.
6. Michael Blaha and William Premerlani. Object-Oriented Modeling and Design for

Database Applications. Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1998.
7. Max A. Bramer, editor. Knowledge Discovery and Data Mining. IEE Professional

Applications of Computing Series 1. The Institution of Electrical Engineers, 1999.
8. Michael Barr, Charles Wells. Category Theory for Computing Science. Prentice

Hall, New York, 1990.
9. John F. Cragan, Donald C. Shields. Understanding Communication Theory: The

Communicative Forces for Human Action. Allyn and Bacon, Boston et al., 1998.
10. Richard Dawkins. The Selfish Gene. Oxford University Press, 1976.
11. Volker Dötsch, Kimihito Ito, and Klaus P. Jantke. Human-agent cooperation in

accessing and communicating knowledge media? A case in medical therapy plan-
ning. In Gunter Grieser and Yuzuru Tanaka, editors, International Workshop on
Intuitive Human Interface for Organizing and Accessing Intellectual Assets, In-
ternational Workshop, Dagstuhl Castle, Germany, March 1-5, 2004, Proceedings,
volume 3359 of Lecture Notes in Artifical Intelligence, pages 68 - 87, Berlin, Hei-
delberg, New York, 2005. Springer-Verlag.

12. Floriana Esposito, Oriana Licchelli, and Giovanni Semeraro. Discovering Student
Models in e-learning Systems. Journal of Universal Computer Science, 10 (1): 47 -
57, January 2004.

13. Gunter Grieser, Klaus P. Jantke and Steffen Lange. Consistency Queries in Infor-
mation Extraction. In Nicolò Cesa-Bianchi, Masayuki Numao and Rüdiger Rei-
schuk, editors, Proc. 13th International Conference on Algorithmic Learning The-
ory, volume 2533 of Lecture Notes in Artificial Intelligence, pages 173 - 187, Berlin,
Heidelberg, NewYork, 2002. Springer-Verlag.

14. Rudy Hirschheim, Heinz K. Klein, and Kalle Lyytinen. Information Systems De-
velopment and Data Modeling, Conceptual and Philosophical Foundations. Cam-
bridge University Press, Cambridge, 1995.

15. Douglas R. Hofstädter. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books,
1979.

16. Gerard Huet and Derek C. Oppen. Equations and Rewrite Rules: A Survey. In
Ronald V. Book, editor, Formal Language Theory: Perspectives and Open Prob-
lems, pages 349 - 405. Academic, 1980.

17. Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems That
Learn. The MIT Press, 1999.

18. Klaus P. Jantke. The biotope issue in meme media implementations. In Gunter
Grieser and Yuzuru Tanaka, editors, International Workshop on Intuitive Human
Interface for Organizing and Accessing Intellectual Assets, International Workshop,
Dagstuhl Castle, Germany, March 1-5, 2004, Proceedings, volume 3359 of Lecture
Notes in Artificial Intelligence, pages 99 - 107, Berlin, Heidelberg, NewYork, 2005.
Springer-Verlag.

200 R. Kaschek, K.P. Jantke, and I.-T. Nébel

19. Klaus P. Jantke. Inductive modeling: a roadmap. Technical Report, Forschungsin-
stitut für Informations Technologien Leipzig e.V., Forschungsbericht 2005-02, Jan-
uary 2005.

20. Klaus P. Jantke. Principles, potentials and problems of inductive reasoning in meme
media technology applications (invited keynote). In Yuzuru Tanaka, editor, Proc.
2nd International Symposium on Ubiquitous Knowledge Network Environment,
March 16 - 18, 2005, Sapporo Convention Center, Sapporo, Japan, pages 29 - 43.
Hokkaido University Sapporo, Japan, Meme Media Lab., 2005.

21. Klaus P. Jantke and Nataliya Lamonova. Assistance and induction ? the therapy
planning case. In S. Hartmann, R. Kaschek, Kinshuk, K.-D. Schewe, J.M. Turull
Torres, and R. Whiddett, editors, First International Workshop on Perspectives
of Intelligent Systems? Assistance, PISA 2005, Palmerston North, New Zealand,
March 3 - 5, 2005, pages 72 - 85. Massey University, Dept. of Information Systems,
2005.

22. Roland Kaschek. Modeling ontology use for information systems. In Klaus-Dieter
Althoff, Andreas Dengel, Ralph Bergmann, Markus Nick , Thomas Roth-Berghofer
Th., editors, Professional Knowledge Management. LNCS 3782 Springer Verlag,
2005.

23. Wilhelm Kamlah and Paul Lorenzen. Logische Propädeutik: Vorschule des
vernünftigen Redens. Verlag J. B. Metzler, Stuttgart, Weimar, 1996.

24. Willi Klösgen and Jan M. Zytkow, editors. Handbook of Data Mining and Knowl-
edge Discovery. Oxford University Press, 2002.

25. Raph Koster. A Theory of Fun for Game Design. Paraglyph Press, Inc.,2005.
26. Nataliya Lamonova, Kimihito Ito, and Yuzuru Tanaka. From planning tools to in-

telligent assistants: Meme Media and logic programming technologies. In S. Hart-
mann, R. Kaschek, Kinshuk, K.-D. Schewe, J. M. Turull Torres, and R. Whiddett,
editors, First International Workshop on Perspectives of Intelligent Systems? As-
sistance, PISA 2005, Palmerston North, New Zealand, March 3 - 5, 2005, pages
143 - 152. Massey University, Dept. of Information Systems, 2005.

27. Angelika Linke, Markus Nussbaumer, and Paul R. Portmann; Transscript Linguis-
tics, (In German). Max Niemeyer Verlag, Tübingen, 4th. unchanged edition 2001.

28. Istvan-Tibor Nebel. Patient and learner adaptation in technology enhanced learn-
ing by induction based on medical context. Technical report, Forschungsinstitut
für Informations Technologien Leipzig e.V., Forschungsbericht 2004 - 02, Decem-
ber 2004.

29. Istvan-Tibor Nebel. From planning tools to intelligen tassistants: Meme Media
and logic programming technologies. In S. Hartmann, R. Kaschek, Kinshuk, K.-D.
Schewe, J. M. Turull Torres, and R. Whiddett, editors, First International Work-
shop on Perspectives of Intelligent Systems’ Assistance, PISA 2005, Palmerston
North, New Zealand, March 3 - 5, 2005, pages 176 - 186. Massey University, Dept.
of Information Systems, 2005.

30. Alexander Pfänder. Logik. Verlag von Max Niemeyer, Halle a.d. Saale, 1921.
31. George Polya. How to Solve It. Princeton University Press, Princeton, New Jersey,

1988.
32. Michael J. Reddy. The conduit metaphor: A case of frame conflict in our language

about language. In Andrew Ortony, editor, Metaphor and Thought, 4th. printing
of second edition of 1992. Cambridge University Press, 1998.

33. Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973.
34. Herbert Stachowiak. Erkenntnisstufen zum Systematischen Neopragmatismus und

zur Allgemeinen Modelltheorie. In Herbert Stachowiak, editor, Modelle: Konstruk-
tionen der Wirklichkeit, pages 87 - 146. Wilhelm Fink Verlag, München, 1983.

Towards Understanding Meme Media Knowledge Evolution 201

35. Herbert Stachowiak. Modell. In Helmut Seiffert and Gerard Radnitzky, editors,
Handlexikon zur Wissenschaftstheorie, pages 219 - 222. Deutscher Taschenbuch
Verlag GmbH&Co. KG, München, 1992.

36. Mark Stefik. The next knowledge medium. AI Magazine, 7(1):34 - 46, 1986.
37. Yuzuru Tanaka. Meme Media and Meme Market Architectures. IEEE Press and

Wiley-Interscience, 2003.
38. Bernhard Thalheim. Entity-Relationship Modeling. Springer-Verlag, Berlin, Hei-

delberg, 2000.
39. Haridimos Tsoukas. Do we really understand tacit knowledge? Retrieved from

http://www.is.lse.ac.uk/events/esrcseminars/tsoukas.pdf on 31 August 2005.
40. Erich Trunz, editor. Goethe. Faust. C. H.Beck, 1996.
41. Roelf Wieringa. Algebraic foundations for dynamic conceptual models. PhD thesis,

Free University of Amsterdam, Amsterdam, The Netherlands, Mai 1990.

Mechanisms of Knowledge Evolution for Web
Information Extraction

Carsten Müller

SAP AG
Neurottstr. 16, 69190 Walldorf, Germany

carsten.mueller@sap.com

Abstract. The knowledge that is needed in Web information extrac-
tion can, under certain assumptions, be characterized as the knowledge
held by wrappers that are used to extract the semantics of documents.
The evolution of this knowledge can be divided into the phase of initial
learning of the wrappers and the later phase of wrapper maintenance.
In this paper we will focus only on the initial learning phase. Based on
the LExIKON System, the principal structure of learning algorithms for
island wrappers is explained.

1 Motivation

In times of a continual growing flood of information knowledge, management sys-
tems gain more and more importance. Of course, standard text-retrieval systems
are specially designed to provide easy access to all this information. However,
they have no access to the semantics of the documents and, therefore, lose quality
when they have to manage billions of documents. With the help of information
extraction programs, known as wrappers, the search results can be improved in
terms of quality, as wrappers can assist search engines by providing that neces-
sary access [17].

In order to determine the semantics of documents, wrappers need some knowl-
edge about those documents. The kind of knowledge they need strongly depends
on the type of documents that is focused on. In the case of free-text documents,
typical approaches are based on linguistic information. With regard to semi-
structured documents, wrappers usually take advantage of XPATH expressions
or – as in our case – pattern languages. Of course, wrappers can acquire this
knowledge directly from the user; this is the case if wrappers are programmed
manually. Alternatively, the process of knowledge acquisition can be carried out
by assistance systems.

The LExIKON system, presented in [7, 22], is such an assistance system. One
of the main goals that the developers of the LExIKON system pursued was the
development of a system that can be handled even by users who do not have any
knowledge about Information Extraction. The only task that the users have to
perform is to indicate their opinion on documents that are presented in their Web
browser, and to teach the system until it has completely learned their opinion.
The whole process of wrapper learning is hidden from the user.

K.P. Jantke et al. (Eds.): Federation over the Web, LNAI 3847, pp. 202–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mechanisms of Knowledge Evolution for Web Information Extraction 203

The acceptance of a learning system for wrappers strongly depends on the
quality of the generated wrappers. This means that the system has to be able
to learn wrappers for as many Web pages as possible. As Web pages have be-
come more and more complex, the hidden learning processes have to be quite
sophisticated.

The following sections deal with the mechanisms of knowledge evolution by
wrappers. First of all some background knowledge about the LExIKON system
will be provided in Section 2. Based on this knowledge a simple learning algo-
rithm will be presented in Section 3. This learning algorithm will be studied
more precisely in Section 4. After a short overview in Section 5 that shows how
to deal with negative examples, some test results will be presented in Section 6.

2 The LExIKON Framework

The LExIKON system [7, 22] is an assistance system for generating wrappers
that perform extraction with the help of pattern languages. The previously men-
tioned goal of developing a system that can also be handled by users with no
knowledge about Information Extraction was achieved by the use of a simple
query scenario [6].

Fig. 1. The LExIKON system at work

204 C. Müller

At the beginning of such a scenario the user has to mark the so-called positive
examples in his/her web browser (see Fig. 1). These positive examples constitute
part of the information in which the user is interested. Based on these examples
the LExIKON system generates some hypotheses that reflect its overall view on
the document. By means of these hypotheses the system creates a wrapper that
is then applied to the document, and the results of this extraction process are
presented to the user. If the user is satisfied with these results, the process of
wrapper learning is completed. Otherwise the user can request a further learning
step by supplying LExIKON with more examples. Along with additional positive
examples, the user can specify so-called negative examples by rejecting results
that the system has offered. With each learning step the wrapper’s knowledge
about the user’s interests increases. The evolution of this knowledge does not
end until the user is satisfied with the results of the extraction process.

The wrappers that are generated by the LExIKON system belong to the class
of island wrappers [28]. The name island wrapper comes from the assumption
that the relevant information is always embedded between particular strings, the
so-called left and right delimiters. These strings can be summarized as delimiter
languages that in the simplest cases are just sets of strings, and in more complex
cases may be patterns. For our purposes, advanced elementary formal systems
(AEFS) turned out to be the best programming language for Island Wrappers
[8, 21]. The reason is that delimiter languages and structural constraints can
both be expressed in a very compact form (see Fig. 2).

extract(X1,X2,X3,Y0L1X1R1Y1L2X2R2Y2L3X3R3Y3) ← l1(L1), nc-r1(X1), r1(R1),
nc-l2(Y1),
l2(L2), nc-r2(X2), r2(R2),
nc-l3(Y2),
l3(L3), nc-r3(X3), r3(R3).

nc-r1(X) ← not c-r1(X).
c-r1(X) ← r1(X). c-r1(XY) ← c-r1(X). c-r1(XY) ← c-r1(Y).
nc-l2(X) ← not c-l2(X).
c-l2(X) ← l2(X). c-l2(XY) ← c-l2(X). c-l2(XY) ← c-l2(Y).
nc-r2(X) ← not c-r2(X).
c-r2(X) ← r2(X). c-r2(XY) ← c-r2(X). c-r2(XY) ← c-r2(Y).
nc-l3(X) ← not c-l3(X).
c-l3(X) ← l3(X). c-l3(XY) ← c-l3(X). c-l3(XY) ← c-l3(Y).
nc-r3(X) ← not c-r3(X).
c-r3(X) ← r3(X). c-r3(XY) ← c-r3(X). c-r3(XY) ← c-r3(Y).
l1(href =′′).
l1(href =′).
r1(′′).
r1(′).
l2(>).
r2(< /a >).
l3(().
r3(). < /li >).

Fig. 2. AEFS

Mechanisms of Knowledge Evolution for Web Information Extraction 205

An AEFS wrapper, as it is presented here, consists of three parts. The first
part of the wrapper contains a pattern (Y0L1X1R1Y1L2X2R2Y2) that defines the
order in which the components, the delimiter languages and the remaining strings
take their place within the document. The variables Xi, i ∈ {1 . . . n} represent
the components of a positive example. The variables Li and Ri stand for left
and right delimiter languages. The remaining text fragments of the document
are represented by the variables Yj , j ∈ {0 . . . n}.

The second part of an AEFS wrapper is a set of constraints. These constraints
describe how the extraction process is to be performed. Words of the right de-
limiter languages Ri, for instance, must not be subwords of the component Xi

of any positive example. As far as the left delimiter languages Li, i ∈ {2 . . . n}
are concerned, there is, moreover, a rule defining that words of these delimiter
languages must not be contained in the remaining strings Yi−1.

The last part of an AEFS wrapper is formed by the words of the delimiter
languages. Figure 2 shows that the delimiter languages can be written as a list of
words. Alternatively, they can also be written in the form of a regular pattern.

Most of the targeted Web pages are based on pre-defined html templates and
only differ in their semantic content. As a result, wrappers for many of these
pages contain the same pattern and the same constraints; only the delimiter
languages are different. Consequently, the knowledge that is necessary in order
to extract the semantics of those documents is mostly provided by the delim-
iter languages. In the context of Web information extraction this means that
the process of knowledge evolution can be reduced to the process of delimiter
learning. This task will be explained in the following sections.

3 The Process of Knowledge Aquisition

In order to understand the process of delimiter learning, the interface between
the LExIKON system and the learning algorithms has to be described first. The
LExIKON framework strictly defines the input and output parameters of the
learning algorithms. Available input parameters are the example document and
the lists of positive and negative examples. Each example is a tuple (x1, . . . , xn)
which is complemented by the position of its components (p1, . . . , pn) (see Fig. 3).
Moreover, each example contains a flag m that indicates whether it has a positive
or a negative rating. The output parameter of each learning algorithm is an
Island Wrapper written in AEFS.

[(x1, p1, x2, p2, . . . xn, pn, m), (x1, p1, x2, p2, . . . xn, pn, m), . . .]

Fig. 3. List of examples

However, the learning algorithms need the information in a particular format.
Therefore, a data preparation step has to be carried out before the learning
can begin. Hence, all existing learning algorithms can be divided into a data
preparation step and a delimiter learning step (see Fig. 4).

206 C. Müller

� Data
Preparation

� Delimiter
Learning

�

Fig. 4. Common structure of learning algorithms

Normally, the data preparation starts with the division of the list of examples
into lists of positive and negative ones. In the easiest case the learning of the
wrapper is only based on the list of positive examples, while the role of the
negative examples is restricted to the validation of the learned wrapper. In the
next step the list of positive examples is used to generate a list of text fragments
for each delimiter language. These text fragments are prefixes or suffixes of
the strings that surround the components. This means that any text fragment
between two consecutive components xi and xi+1 is divided into two parts. The
left part is added to the list of the right delimiter ri, while the right part is added
to the list of the left delimiter li+1.

During the learning step these lists of text fragments are used to find suitable
delimiters. In the case where some left delimiter language Li is to be learned,
suffixes from the words of the list for Li are selected. During the selection processs
the constraints that are specified in AEFS have to be considered. Thus selection
of suffixes is restricted to those that, if regarded as subwords, appear just once
within the words of the list. Similarly, when looking for right delimiters the
constraints of AEFS must be fulfilled by prefixes of the words in the lists; only
prefixes that do not occur inside components are selected. Among all the selected
prefixes and suffixes only the most suitable ones are used as delimiters. The
delimiters can now be embedded into an AEFS program, either directly or after
having been generalized into the form of a pattern language.

However, a learning algorithm at this stage of development will fail with
regard to many documents. On the one hand, this situation can be improved
by modifying the data preparation step; on the other hand, better results can
be achieved by profiting from synergy effects between delimiter languages. The
optimization of learning algorithms is the subject of our next section.

4 Wrapper Induction Schemes

One of the crucial points within the learning algorithm described in Sect. 3
is located within the data preparation step: it is the generation of the list of
candidates for the words of the delimiter languages. In this context, the rules
according to which the division of the text fragments between two consecutive
components takes place are of highest importance. Test results showed that
rules following heuristics such as “division into parts of equal length” result in
wrappers of poor quality.

Better results can be achieved if more attention is paid to the constraints of
AEFS. According to these constraints the left delimiter language Li must not
be contained in the string Yi−1, i = [2..n]. Moreover, Xi must not be contained

Mechanisms of Knowledge Evolution for Web Information Extraction 207

in Ri, i = [1..n]. As the information for learning Li+1 and Ri is derived from the
same strings, there are synergy effects between these two delimiters. However, in
the case where a learning algorithm is structured in a way that the information
for all delimiters is prepared before any delimiter is learned, these synergy effects
are lost. Consequently, it might be possible that the AEFS constraints cannot be
fulfilled even though it would normally be possible to learn an Island Wrapper
for the document. In order to avoid this situation either the left or the right
delimiters must be learned first. The strings between Xi and Xi+1, reduced by
the delimiters that have been learned already, can then be used for learning the
remaining delimiters. This leads us to a new scheme for learning algorithms.

�
Data

Preparation
left

delimiters

�
Learning

left
delimiters

�
Data

Preparation
right

delimiters

�
Learning

right
delimiters

�

Fig. 5. Left delimiters before right delimiters

In the scheme represented in Fig. 5 all left delimiter languages are learned
before any right delimiter is taken into consideration. A problem that arises with
this scheme is that the remaining string between Xi and Li+1 might be too short
to learn the right delimiter language Ri due to the constraints of AEFS. This
problem is avoided if the right delimiters are learned before the left ones (see
Fig. 6).

�
Data

Preparation
right

delimiters

�
Learning

right
delimiters

�
Data

Preparation
left

delimiters

�
Learning

left
delimiters

�

Fig. 6. Right delimiters before left delimiters

A starting-point for optimization is the selection of candidates for delimiter
languages. When the candidates that do not follow the constraints of AEFS are
eliminated, very often more than one candidate remains as a possible delimiter.
Consequently, criteria for selection are necessary. The two most suitable selection
heuristics seem to be either to prefer candidates with ‘minimal length’ or those
with ‘maximal length’. A delimiter has ‘minimal length’ if it is just long enough to
fulfill the constraints of AEFS. Regarding left delimiters li (suffixes), this means
that they must not be part of any intermediate string Yi−1. For right delimiters
ri (prefixes) it means that they must not be part of any component Xi. A left
delimiter (suffix) with ‘maximal length’ contains, of course, the left delimiter
with ‘minimal length’. Moreover, it contains the longest common subsequence
[11] that is a prefix of the ‘left delimiter with minimal length’. The right delimiter
(prefix) with ‘maximal length’ is similarly defined.

208 C. Müller

�
Data

Preparation
left

delimiters

�
Learning

left
delimiters

�
Data

Preparation
right

delimiters

�
Learning

right
delimiters

�

Fig. 7. Left/right delimiters of minimal length

Preferring only delimiters of minimal length has the advantage that where
there is the possibility to learn an Island Wrapper this will surely be achieved.
However, the query scenario will involve many steps and the learning algorithm
has to handle many negative examples.

Preferring only delimiters of maximal length has the advantage that the query
scenario converges very rapidly. This means that the user does not need to
provide many positive and negative examples in order to obtain a satisfactory
wrapper. However, when right delimiters are learned before left ones, it may
happen that the intermediate strings Yi−1 are too short for learning the left
delimiters Li according to the constraints of AEFS. In this case the algorithm
might need to be run for a second time with an adapted data preparation strategy
(see Fig. 8).

�
Data

Preparation
right

delimiters

�
Learning

right
delimiters

�
Data

Preparation
left

delimiters

�
Learning

left
delimiters

��

Fig. 8. Right delimiters before left delimiters with loop-back

With the help of a combination of the two strategies (delimiters with max-
imal length and delimiters with minimal length), the disadvantages described
above can be avoided. One possibility is, for instance, to generate the delimiter
languages with minimal length first. After that, these delimiter languages can
be extended to those with maximal length (see Fig. 9).

� Data Prep.
Ri

� Min. length
Learning Ri

� Data Prep.
Li

� Min. length
Learning Li

� Data Prep.
Ri

� Max. length
Learning Ri

� Data Prep.
Li

� Max. length
Learning Li

�

Fig. 9. First minimal length, then maximal length

Mechanisms of Knowledge Evolution for Web Information Extraction 209

However, the question arises as to whether such a complex scheme is really
necessary for a sucessful learning process. Can the same results not also be
achieved by another scheme? So far only the results for learning all delimiters
with minimal length or with maximal length were discussed. One possibility that
combines these approaches could be to learn left delimiters with minimal length
before learning right delimiters with maximal length. The disadvantage of this
approach becomes obvious when considering that left delimiters are usually much
longer than right ones. The reason for this is that the intermediate strings are
much longer than the components. Consequently, the probability that a delimiter
cannot fulfill the AEFS constraints is much higher where left delimiter languages
are concerned.

�
Data

Preparation
right

delimiters

�
Learning
minimal

right
delimiters

�
Data

Preparation
left

delimiters

�
Learning
maximal

left
delimiters

�

Fig. 10. Minimal right delimiters before maximal left delimiters

To avoid this problem there remains the alternative of learning right delimiters
with minimal length followed by left delimiters with maximal length (see Fig. 10).
Test results have shown that this is sufficient to achieve a level of quality that
is as high as the level of the scheme in Fig. 9. The test results in Sect. 6 were
achieved using an algorithm based on this scheme.

5 Dealing with Negative Examples

So far, the learning of the wrapper was performed without paying attention to
negative examples. But before an approach for using negative examples within
the learning algorithm can be presented, some basic thoughts have to be dis-
cussed. Basically, negative examples are extracted tuples that were rejected by
the user. In terms of structure they are built in the same way as positive exam-
ples. However, they differ in their negative rating.

As the negative rating refers to each tuple as a whole, a question arises as to
which component is responsible for the user’s rejection. When thinking about
island wrappers the situation is even worse. Even if the component is known,
two delimiter languages remain of which either (or both) may be the reason for
rejection.

So how can negative examples be embedded in the learning algorithm? One
possibility is that the wrapper is only learned with the help of positive exam-
ples. If the new wrapper does not extract the negative examples any more, the
learning task ends. If there are still negative examples that are extracted by the
new wrapper, the wrapper has to be adapted. This learning algorithm is built
according to the scheme in Fig. 11.

The goal of the adaptation process is, of course, that the negative examples
will not be extracted any more. To achieve this task it is sufficient if any single

210 C. Müller

�
Data

Preparation
right

delimiters

�
Learning

right
delimiters

�
Data

Preparation
left

delimiters

�
Learning

left
delimiters

���
��

��
��

��

Fig. 11. Learning algorithm with consistency check

component of the negative example is no longer extracted. This can be accom-
plished by extending one of the delimiter languages. The crucial point is to find
out which delimiter language has to be changed in order to meet the user’s needs.

As there is no AEFS constraint that must be fulfilled for L1, one possibility
could be to always modify L1. Tests showed that this heuristic is quite satisfac-
tory. If the rejection is based on a delimiter language other than L1, the user
can moreover influence the system’s behaviour by providing a positive example.

Alternatively, the component that is responsible for the rejection has to be
determined. This can be done by statistical calculations. One possibility could
be to find out which negative component has the smallest similarity to its corre-
sponding positive components. Kushmerick [19] defined some similarity measures
that can be used for this task.

However, the question remains as to whether the right or left delimiter lan-
guage is responsible for the rejection. With the help of statistical features, this
problem can also be solved. If the similarity between the negative component
and its corresponding positive ones is very small, the left delimiter language has
to be changed.

However, negative examples are not only of use for testing a wrapper that
was learned using just positive examples. Negative examples can also be used
during the learning process. One possibility is to compare the components of the
negative examples with those of the positive ones. If a component of a negative
example is also part of a positive example, it cannot be the reason for the re-
jection. Consequently, the corresponding left and right delimiter languages are
working correctly. This means that if the negative example is still extracted, the
delimiter languages of another component must be changed.

If it is known which component is responsible for the rejection, the selection
process of the delimiter candidates can be adapted. This means that the candi-
dates for delimiters not only have to fulfill the AEFS constraints but also must
not be prefixes or suffixes of the negative components.

6 Test Results

We tested our learning algorithm by generating wrappers for the Web pages
of Google, Yahoo!, Yahoo! Finance, Amazon, EBay, AltaVista and Lycos. It
became obvious that the learning algorithm can generate wrappers for all of
these pages. Moreover, the algorithm converges very rapidly. This means that
only a few learning steps are necessary in order to create a satisfactory wrapper.

Mechanisms of Knowledge Evolution for Web Information Extraction 211

As far as the result pages of Google and Yahoo! were concerned, we tried
to extract the document title, the content snippet and the link for each search
result. Where all these components were available, the extraction was performed
well. In cases where one of the components was missing, either the corresponding
search result did not get extracted as a whole or a tuple was extracted containing
a mixture of two search results. The reason for this is that an AEFS wrapper
can only extract tuples if no delimiter languages are missing.

Regarding the Web page of Yahoo! Finance, the learning task was to create
a wrapper for the table in which the current market prices of companies are
displayed. As there was no delimiter language missing, the generated wrappers
achieved a high quality.

With respect to the Web portal of Amazon we created a wrapper for extracting
book title, author and price. This worked very well. Only a few learning steps
were necessary to create the wrapper. Again, there was the problem with the
missing delimiter languages. The same results were achieved for EBay, AltaVista
and Lycos.

To summarize these results one can say that a wrapper could be learned for
each Web page. Moreover, only a few learning steps were necessary in order
to create this wrapper. The quality of the wrapper was good if all delimiter
languages were available.

7 Summary and Future Work

The LExIKON system, as described in this paper, may be seen as a powerful
assistant to the user. With the help of LExIKON the task of wrapper generation,
which could formerly only be performed by specialists in the area of Information
Extraction, can now be carried out by any user who has some basic knowledge
about computers.

This goal could only be achieved with the help of intelligent algorithms for
knowledge evolution. The problems that have to be solved in the area of knowl-
edge evolution for information extraction were illustrated by taking a basic al-
gorithm as an example. Based on this algorithm the concept of wrapper induc-
tion schemes was developed. With the help of these schemes new structures for
learning algorithms could be invented. These learning algorithms optimized the
learning of AEFS wrappers to a high degree.

On the one hand, the tests showed that the wrappers are already powerful
enough to extract the semantics of many documents. On the other hand, there
are still some problems to be solved. Those problems, including the problem of
missing delimiter languages and the problem of changes within the order of the
components, cannot only be solved by learning delimiter languages; the whole
structure of the AEFS wrapper has to be changed. This will be the topic of our
further research in the area of wrapper learning.

So far only the task of the initial wrapper learning was discussed. But when
we think about knowledge evolution there is still one more aspect that has to be
mentioned. Evolution means a continual process of further development. This

212 C. Müller

phenomenon can also be observed with regard to the Internet. As Web pages
change over time, the wrappers deployed to extract their semantics have to be
adapted to the pages’ new structure. The process of relearning, called wrapper
maintenance, will also be a topic of further research.

Acknowledgements

The author acknowledges the very fruitful cooperation with Professor Jantke
from FIT-Leipzig, with his former LExIKON research and development team and
with partners from research groups at the Darmstadt University of Technology,
at the University of Koblenz-Landau, at the University of Leipzig and at the
DFKI in Saarbrücken.

Bernd Thomas did pioneering work on Island Wrappers. Klaus Jantke, Gunter
Grieser and Steffen Lange invented the concept of AEFS which turned out to be
essential. Kathrin Speich, Gunter Grieser and Jörg Herrmann contributed their
own ideas to formal language learning for information extraction.

For the present work with SAP I have to thank Klaus Kreplin, Wolfgang
Degenhardt and the whole TREX team who allowed me to experiment with the
search engine SAP TREX. With their help we were able to turn LExIKON into
an efficient assistant for Information Extraction, that is already used by SAP
TREX and many other SAP solutions.

References

1. D. Angluin and C. H. Smith. A survey of inductive inference: Theory and methods.
Computing Surveys, 15:237–269, 1983.

2. D. Angluin and C. H. Smith. Inductive inference. In Stuart C. Shapiro, editor,
Encyclopedia of Artificial Intelligence. Second Edition (Volume 1), pages 672–682.
John Wiley & Sons, Inc., 1992.

3. B. Chidlovskii. Information extraction from tree documents by learning subtree
delimiters. In Subbarao Kambhampati and Craig A. Knoblock, editors, Proceedings
of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03), August
9-10, 2003, Acapulco, Mexico, pages 3–8, 2003.

4. E.M. Gold. Limiting recursion. Journal of Symbolic Logic, 30:28–48, 1965.
5. E.M. Gold. Language identification in the limit. Information and Control, 10:447–

474, 1967.
6. G. Grieser, K.P. Jantke, and S. Lange. Consistency queries in information extrac-

tion. In N. Cesa-Bianchi, M. Numao, and R. Reischuk, editors, ALT2002, volume
2533 of LNAI, pages 173–187. Springer-Verlag, 2002.

7. G. Grieser, K.P. Jantke, S. Lange, and W. Niehoff. LExIKON – Systemarchitek-
turen zur Extraktion von Information aus dem Internet. In Proc. 42nd IWK, pages
913–918. Technische Universität Ilmenau, 2000.

8. G. Grieser, K.P. Jantke, S. Lange, and B. Thomas. A unifying approach to HTML
wrapper representation and learning. In Proc. 3rd Int. Conf. on Discovery Science,
LNAI 1967, pages 50–64. Springer-Verlag, 2000.

9. G. Grieser and S. Lange. Learning approaches to wrapper induction. In Proc. 14th
Int. Florida AI Research Society Conference, pages 249–253. AAAI Press, 2001.

Mechanisms of Knowledge Evolution for Web Information Extraction 213

10. G. Grieser and S. Lange. Changing the perspective: Interaction scenarios that take
the needs of the machine into account. In R. Kaschek, editor, Intelligent Assistant
Systems: Concepts, Techniques and Technologies. Idea Group Inc., 2005.

11. D. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. Communications of the ACM, 18:341–343, 1975.

12. S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems That Learn. The MIT
Press, 1999.

13. K. P. Jantke. Formalisms underlying intuitiveness in human-computer interaction.
In Yuzuru Tanaka, editor, Proc. 3rd International Workshop on Access Architec-
tures for Organizing and Accessing Intellectual Assets, March 5–7, 2003, Sapporo,
Japan. Meme Media Laboratory, Hokkaido University, 2003.

14. K. P. Jantke. Informationsbeschaffung im Internet. Lerntechnologien für die Ex-
traktion von Information aus semistrukturierten Dokumenten. electrosuisse Bul-
letin SEV/VSE, 94(1):15–22, 2003.

15. K. P. Jantke. Wissensmangement im Internet. auf dem Weg zum Digitalen Assis-
tenten für das e-Learning. Global Journal of Engineering Education, 7(3):259–266,
2003.

16. K. P. Jantke, G. Grieser, and S. Lange. Adaptation to the learners’ needs and
desires by induction and negotiation of hypotheses. In Michael E. Auer and Ursula
Auer, editors, International Conference on Interactive Computer Aided Learning,
ICL 2004, Sept. 29 – Oct. 1, 2004, Villach, Austria (CD-ROM), 2004.

17. K.P. Jantke and C. Müller. Wrapper induction programs as information extraction
assistance. In S. Hartmann, R. Kaschek, Kinshuk, K.-D. Schewe, J.M. Turull-
Torres, and R. Whiddett, editors, First International Workshop on Perspectives
of Intelligent Systems’ Assistance, PISA 2005, Palmerston North, New Zealand,
March 3-5, 2005, pages 86–101, Massey University, Dept. Information Systems,
2005.

18. R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR
mathematicians - A survey. Information Sciences, 22:149–169, 1980.

19. N. Kushmerick. Regression testing for wrapper maintenance. In AAAI/IAAI,
pages 74–79, 1999.

20. N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence, 118:15–68, 2000.

21. S. Lange, G. Grieser, and K.P. Jantke. Advanced elementary formal systems. TCS,
298:51–70, 2003.

22. S. Lange, K.P. Jantke, G. Grieser, and W. Niehoff. LExIKON – Lernszenarios
für die Extraktion von Information aus dem Internet. In Proc. 42nd IWK, pages
901–906. Technische Universität Ilmenau, 2000.

23. K. Lerman, S.N. Minton, and C.A. Knoblock. Wrapper maintenance: A machine
learning approach. Journal of Artificial Intelligence Research, 18:149–181, 2003.

24. A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent
Systems, 16:72–79, 2001.

25. I. Muslea, S.N. Minton, and C.A. Knoblock. Hierarchical wrapper induction for
semistructured information sources. Autonomous Agents and Multi-Agent Systems,
4:93–114, 2001.

26. S. Soderland. Learning information extraction rules for semi-structured and free
text. In Machine Learning. 34(1–3):233-272, 1999.

214 C. Müller

27. A. Stephan and K. P. Jantke. Wissensextraktion aus dem Internet mit Hilfe ge-
lernter Extraktionsmechanismen. In online 2002, Düsseldorf, Proc., Vol. VI, pages
C612.01–C612.12. ONLINE GmbH, 2002.

28. B. Thomas. Anti unification based learning of T-wrappers for information extrac-
tion. In Proc. of AAAI Workshop on Machine Learning for IE, pages 190–198.
AAAI, 1999.

29. B. Thomas. Token-templates and logic programs for intelligent web search. Journal
of Intelligent Information Systems, 14:241–261, 2000.

Author Index

Akaishi, Mina 115

Christophides, Vassilis 130

Haraguchi, Makoto 59
Hoffmeister, Björn 1
Hori, Koichi 115
Hornbæk, Kasper 143

Jantke, Klaus P. 183

Kaschek, Roland 183
Kida, Takuya 25
Kudo, Mineichi 79

Lunzer, Aran 143

Minato, Shin-ichi 40
Motoda, Hiroshi 97
Müller, Carsten 202

Nakamura, Atsuyoshi 79
Nébel, István-Tibor 183

Okubo, Yoshiaki 59

Shoda, Ryosuke 97
Spyratos, Nicolas 115, 130

Tanaka, Yuzuru 115, 159

Yoshida, Tetsuya 97

Zeugmann, Thomas 1

	Frontmatter
	Knowledge Look-Up and Matching
	Text Mining Using Markov Chains of Variable Length
	Faster Pattern Matching Algorithm for Arc-Annotated Sequences
	VSOP (Valued-Sum-of-Products) Calculator for Knowledge Processing Based on Zero-Suppressed BDDs

	Knowledge Search and Clustering
	A Method for Pinpoint Clustering of Web Pages with Pseudo-Clique Search
	Specific-Purpose Web Searches on the Basis of Structure and Contents
	Graph Clustering Based on Structural Similarity of Fragments

	Knowledge Mediation
	Connecting Keywords Through Pointer Paths over the Web
	Querying with Preferences in a Digital Library

	Interoperation of Web-Based Resources
	An Enhanced Spreadsheet Supporting Calculation-Structure Variants, and Its Application to Web-Based Processing
	Knowledge Federation over the Web Based on Meme Media Technologies

	Knowledge Evolution
	Towards Understanding Meme Media Knowledge Evolution
	Mechanisms of Knowledge Evolution for Web Information Extraction

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

